Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New tool to measure speeding nuclei is a fast-beam first

An international collaboration at the Michigan State University National Superconducting Cyclotron Laboratory (NSCL) has demonstrated a new technique for studying particles traveling at one-third the speed of light. The result, which will be published in Physical Review Letters, opens up new doors to investigating rare isotopes.

In the study, NSCL users from the Institute for Nuclear Physics of the University of Cologne in Germany and Central Michigan University teamed with Krzysztof Starosta, NSCL assistant professor, and other MSU researchers to make a lifetime measurement of an excited state of germanium-64, Ge-64. Measuring the amount of time it takes for an isotope to decay into lower energy state helps nuclear scientists characterize shape and structure exotic nuclei.

All nuclei are made up of protons and neutrons, and the stable form of Ge-73, relatively abundant on Earth and commonly used as a semiconductor in the computing industry, has 32 protons and 41 neutrons. Ge-64, in contrast, has an equivalent number of protons and neutrons — 32 of each — an exceedingly rare combination for this element. The NSCL Coupled Cyclotron Facility is a world-leader in producing exotic, unstable isotopes.

“The fact that at NSCL sufficient beam time could be allocated for a step-by-step development of the new technique was crucial for the success of this experiment”, says Alfred Dewald, a University of Cologne physicist and a coauthor of the paper. “No other facility is so focused on spectroscopy of exotic nuclei using gamma-ray spectroscopy.”

Physicists are interested in isotopes like Ge-64 with mirror-image sets of protons and neutrons that fall within a specific mass region — heavier than nickel and lighter than tin. It is a nuclear neighborhood marked by strange phenomena, including nuclei that rapidly change from being round to cigar- or pancake-shaped. The broad theoretical outlines of shape-shifting behavior are well understood, yet until now, precise experimental observation has been difficult to achieve.

The method applied by the researchers hinges on the Doppler effect — the same principle that makes an approaching ambulance sound higher pitched than one traveling away, or which causes waves to be more closely spaced together in front of a person walking through water than the waves that trail behind.

Gamma rays, a form of light waves, have a set frequency, a measure of how closely the waves are spaced. When a moving nucleus emits a gamma ray, the ray’s wave will appear compressed in forward directions and stretched out in backward directions. By measuring these Doppler shifts, scientists can calculate the speed of the nucleus when it released the gamma ray.

In the study, scientists directed a beam of Ge-64 into a thin metal foil that slowed the beam down without stopping it. The Ge-64 nuclei began in a high-energy state and dropped to a lower state, a de-excitation that could happen before or after passing through the sheet.

Gamma rays emitted before the nucleus reaches the foil will have different Doppler shifts compared to those emitted from nuclei which downshift their state after passing through the foil. This is because the nuclei have slowed down.

By comparing how many gamma rays came from nuclei before or after passing through the foil, scientists can determine the average distance where the excited states in Ge-64 decayed. Knowing this distance, simple calculations relating speed, distance, and time yielded the average amount of time it took for the Ge-64 to change states, information important to understanding shape, structure and other important properties of the nucleus.

NSCL studies isotopes by fragmenting beams of nuclei traveling at more than 62,000 miles per second. This fast-beam method holds certain advantages over alternative means of producing rare isotopes, allowing physicists to study nuclei at the extreme edge of existence. For example, in fast-beam facilities it’s well-understood how nuclei that first strike a target and then impact downstream detectors slow down and stop, a fact that make exacting measurements possible.

But studying such speeding nuclei is rife with challenges, too, such as filtering and purifying the beam and having the right equipment to detect the few sought-after isotopes from the many billions of billions of other particles in the beam. Until now, such challenges had hindered the success of lifetime measurement experiments at fast-beam facilities.

“To make this experiment happen, you need to bring together all the top elements you have available in the lab and from our users,” said Starosta, the paper’s lead author. “You need everything to be optimized, and it happened for this particular experiment.”

Key to the team’s success was a device designed by Dewald that is capable of making highly precise in-flight distance measurements on the sub-micron scale. A micron is one-millionth of a meter.

“At one-third of the velocity of light it takes about 10-14 seconds to travel a micron,” Dewald said. “This precision is an important factor to reach the final precision of about 10-13 seconds with which one measures the lifetimes of nuclear excitations.”

“It is very important to have a new method available to measure lifetimes of exotic nuclei, as from these lifetimes we learn the most about the quantal structure of atomic nuclei” said Jan Jolie, director Institute for Nuclear Physics of the University of Cologne, “Moreover, the new method allows to determine lifetimes for higher excitations than can be reached by the conventional methods.”

The study’s success is significant for another reason — it is only the second time a precise lifetime measurement has been made in the mysterious portion of the nuclear landscape where unusual proton-neutron ratios may cause strange behavior.

“It’s opening up a whole range of possible studies,” said Roderick Clark, a physicist and co-leader of the nuclear structure group at Lawrence Berkeley National Laboratory, who was not involved in the experiment. “That’s as far as you can go, the frontiers of this research. This is one of the areas that NSCL is leading the world in.”

Geoff Koch | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht New thruster design increases efficiency for future spaceflight
16.08.2017 | American Institute of Physics

nachricht Tracking a solar eruption through the solar system
16.08.2017 | American Geophysical Union

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>



Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

More VideoLinks >>>