Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Innovative carbon nanotube growth tool selected for nanocomposites and mechanical sensor research

20.07.2007
Innovative carbon nanotube growth tool selected for nanocomposites and mechanical sensor research

Surrey NanoSystems, a joint venture between the University of Surrey’s Advanced Technology Institute and CEVP Ltd, has won a major order for its innovative carbon nanotube growth tool from ITA, the advanced technologies research institute in Trapani, Sicily.

ITA selected the NanoGrowth tool for its ability to repeatably grow defined carbon nanotube configurations, and to grow materials at low temperatures. The institute will use the equipment to research carbon nanotube based nanocomposites and mechanical sensors for medical and aerospace applications.

The tool configuration chosen includes a large range of materials processing modules, to support ITA's diverse research programmes. In addition to the NanoGrowth tool's core CVD (chemical vapour deposition) and PECVD (plasma-enhanced CVD) nanomaterial growth capabilities, Surrey NanoSystems will fit modules for catalyst delivery, ion etching and thin-film deposition. This wide-ranging capability will allow ITA researchers to grow precision single- and multi-walled nanotube structures and silicon nanowires, as well as being able to dope, etch and deposit silicon.

The tool will be delivered in August 2007. ITA will become a lead user for Surrey NanoSystems, and in addition to the provision of equipment, the two organisations have signed a three-year development partnership to share intellectual property. Surrey NanoSystems is developing advanced processing templates to support the fabrication of carbon nanotube and silicon nanowire structures for commercial manufacture of semiconductor devices and related electronics applications. ITA will receive these recipes in advance of launch, in return for beta testing. These test bed services – which Surrey NanoSystems will also operate with other partners worldwide – is a major element of the company's strategy to ensure that its processing recipes are both field proven and highly repeatable from tool to tool.

Carbon nanotube research at ITA will be coordinated by Dr Giulia Lanzara. She worked with Surrey NanoSystems to specify the tool configuration, and explains: "I've had a lot of experience growing carbon nanotubes using a horizontal quartz tube furnace. For ITA's forthcoming research projects into nanocomposites and mechanical sensors we need to be able to repeatably grow specific nanotube configurations. The architecture of this tool has been specifically designed to produce repeatable results. Along with excellent expansion capability, NanoGrowth gives us a platform to develop our ideas and create commercial-grade automated processes."

"We are delighted to win such an influential order, and are especially pleased with technical feedback that we will receive from ITA, which will help us to bring further processing modules and techniques to market more quickly, and with the assurance of cross-platform repeatability," adds Ben Jensen, CTO of Surrey NanoSystems.

The NanoGrowth 1000n tool has been purpose-designed for nanomaterial fabrication. Precision fabrication and configuration repeatability principles have been at the core of the tool's architecture, which has been developed by engineers with many years of experience of creating thin-film tools for both scientific research and commercial fabrication. Among the tool's features are an ultra-high purity gas delivery system and flexible closed-loop controls that allow users to define target tolerances to achieve a high level of repeatability during all phases of processing.

Stuart Miller | alfa
Further information:
http://www.surrey.ac.uk

More articles from Physics and Astronomy:

nachricht Hope to discover sure signs of life on Mars? New research says look for the element vanadium
22.09.2017 | University of Kansas

nachricht Calculating quietness
22.09.2017 | Forschungszentrum MATHEON ECMath

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>