Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Innovative carbon nanotube growth tool selected for nanocomposites and mechanical sensor research

20.07.2007
Innovative carbon nanotube growth tool selected for nanocomposites and mechanical sensor research

Surrey NanoSystems, a joint venture between the University of Surrey’s Advanced Technology Institute and CEVP Ltd, has won a major order for its innovative carbon nanotube growth tool from ITA, the advanced technologies research institute in Trapani, Sicily.

ITA selected the NanoGrowth tool for its ability to repeatably grow defined carbon nanotube configurations, and to grow materials at low temperatures. The institute will use the equipment to research carbon nanotube based nanocomposites and mechanical sensors for medical and aerospace applications.

The tool configuration chosen includes a large range of materials processing modules, to support ITA's diverse research programmes. In addition to the NanoGrowth tool's core CVD (chemical vapour deposition) and PECVD (plasma-enhanced CVD) nanomaterial growth capabilities, Surrey NanoSystems will fit modules for catalyst delivery, ion etching and thin-film deposition. This wide-ranging capability will allow ITA researchers to grow precision single- and multi-walled nanotube structures and silicon nanowires, as well as being able to dope, etch and deposit silicon.

The tool will be delivered in August 2007. ITA will become a lead user for Surrey NanoSystems, and in addition to the provision of equipment, the two organisations have signed a three-year development partnership to share intellectual property. Surrey NanoSystems is developing advanced processing templates to support the fabrication of carbon nanotube and silicon nanowire structures for commercial manufacture of semiconductor devices and related electronics applications. ITA will receive these recipes in advance of launch, in return for beta testing. These test bed services – which Surrey NanoSystems will also operate with other partners worldwide – is a major element of the company's strategy to ensure that its processing recipes are both field proven and highly repeatable from tool to tool.

Carbon nanotube research at ITA will be coordinated by Dr Giulia Lanzara. She worked with Surrey NanoSystems to specify the tool configuration, and explains: "I've had a lot of experience growing carbon nanotubes using a horizontal quartz tube furnace. For ITA's forthcoming research projects into nanocomposites and mechanical sensors we need to be able to repeatably grow specific nanotube configurations. The architecture of this tool has been specifically designed to produce repeatable results. Along with excellent expansion capability, NanoGrowth gives us a platform to develop our ideas and create commercial-grade automated processes."

"We are delighted to win such an influential order, and are especially pleased with technical feedback that we will receive from ITA, which will help us to bring further processing modules and techniques to market more quickly, and with the assurance of cross-platform repeatability," adds Ben Jensen, CTO of Surrey NanoSystems.

The NanoGrowth 1000n tool has been purpose-designed for nanomaterial fabrication. Precision fabrication and configuration repeatability principles have been at the core of the tool's architecture, which has been developed by engineers with many years of experience of creating thin-film tools for both scientific research and commercial fabrication. Among the tool's features are an ultra-high purity gas delivery system and flexible closed-loop controls that allow users to define target tolerances to achieve a high level of repeatability during all phases of processing.

Stuart Miller | alfa
Further information:
http://www.surrey.ac.uk

More articles from Physics and Astronomy:

nachricht MEMS chips get metatlenses
21.02.2018 | American Institute of Physics

nachricht International team publishes roadmap to enhance radioresistance for space colonization
21.02.2018 | Biogerontology Research Foundation

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>