Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Croatian Research Institute Launches Novel Online Random Number Generator Service

Computer experts from Ruder Boškovic Institute (RBI) in Zagreb, Croatia, developed and launched the novel internet service providing online access to a 'true' random number generator.

The range of applications of this unique service, named 'QRBGS', spans fields as diverse as advanced scientific simulations, cryptographic data protection and security applications, as well as virtual entertainment – including online gambling and computer games.

'QRBGS' is an acronym for 'Quantum Random Bit Generator Service'. The service is based on 'Quantum Random Number Generator' – or QRBG for short – which is itself an innovative electronic device developed and built two years ago by RBI’s researchers. Overwhelming majority of other random number generators in use today don’t actually provide the 'true' random numbers, but instead so-called 'pseudo-random' numbers. They use various algorithms to pick the numbers from large pre-compiled databases of numbers obtained by e.g. rolling the dice. Hence, anyone who has access to such a database from which the pseudo-random number is picked, can accurately predict the next number that comes out of such generators. On the other hand, QRBG uses the inherently unpredictable quantum process of photon emission to generate random numbers, and as an output it provides the 'true’ random numbers which are impossible to predict.

The new RBI’s QRBGS service enables real-time internet access to QRGB device through several network access modes, such as C/C++ libraries, web services and Mathematica/Matlab client add-ons. The QRBG device itself is located and operated at the RBI and is connected to the internet through advanced computer technologies such as computer clusters and GRID networks. The use of QRBG service is free of charge for academic and scientific community.

QRBGS is available online at

Duje Bonacci | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

nachricht Innovative technique for shaping light could solve bandwidth crunch
20.10.2016 | The Optical Society

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>