Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Microscopic jets, diamonds unlikely on Uranus, and amazing mosquito legs

News from the American Physical Society
Microscopic Polystyrene Balls - now Jet-propelled!
J. Howse, R. Jones, A. Ryan, T. Gough, R. Vafabakhsh, R. Golestanian
Physical Review Letters (forthcoming, advance copy available)
A collaboration of British and Iranian physicists has created an armada of self-propelled polystyrene balls about as wide as a strand of your hair. Their efforts are moving toward self-propelled nanoswimmers that could navigate narrow channels such as the human circulatory system.

The researchers, led by Ramin Golestanian of the University of Sheffield, coated one side of each polystyrene ball with a thin layer of platinum before dropping them into a solution of hydrogen peroxide and water. This metal catalyzes a reaction in which hydrogen peroxide breaks into oxygen and water. Because the reaction spits out three molecules for every two that it consumes, the polystyrene ball is pushed from the platinum side.

Objects as small as these polystyrene balls naturally wander about randomly, a phenomenon caused by jostling about among vibrating atoms and molecules. This "random walk" movement is called Brownian motion. To account for it, the platinum-coated balls were tested against polystyrene balls with no coating.

Over short distances, they found that the half-coated balls moved in a particular direction although their paths meandered over longer distances. Still, the wanderings of the coated balls were distinct from the Brownian motion of the uncoated balls. Their paths were a random walk with step sizes that depended on the concentration of hydrogen peroxide. The larger the hydrogen peroxide concentration, the larger the step.

Physicists have yet to devise a way to keep the balls heading in a particular direction, but chemical reaction catalysis may prove a useful method for propelling microscopic objects in liquids. - KM

Diamonds unlikely in gas giants like Uranus
L. M. Ghiringhelli, C. Valeriani, E. J. Meijer and D. Frenkel
Physical Review Letters (forthcoming, preprint available)
A new study finds that diamonds probably don't crystallize in the atmospheres of planets such as Uranus and Neptune. The conclusion is contrary to recent speculation that small diamonds would spontaneously form in carbon rich layers of the gas giant planets. White dwarf stars, according to the study, are veritable diamond factories.

Physicists at the Universtiet van Amsterdam and the FOM Institute for Atomic and Molecular Physics in the Netherlands performed a numerical analysis showing that at the temperatures and pressures in gas giant planets like Uranus, arrangements of carbon atoms would be much more suitable for creating tiny bits of graphite rather than diamond.

In white dwarfs, on the other hand, the simulation shows that the conditions would cause the carbon atoms to line up in configurations that are much more amenable for diamond crystallization. The conclusion is consistent with the 2004 discovery of a cooling white dwarf star that appears to have a solid diamond core 4000 kilometers across.

Although diamond formation in the atmospheres of gas giants is not strictly impossible, the Dutch physicists say that the odds are exceedingly slim that a diamond could have formed under the conditions that exist in Uranus in the entire lifetime of the universe. - JR

Miraculous Mosquito Legs
C. W. WU, X. Q. King, and Diane Wu
Physical Review E
Mosquitoes walk on water better than water striders, cling to smooth ceilings and walls as tightly as geckos, and clutch the skin of their victims with annoying tenacity in search of blood. Now a collaboration of physicists from Dalian University in China and Simon Fraser University in Canada are looking beyond the insect's pesky reputation to discover how the tiny creatures manage to be so comfortable on such a diverse range of surfaces.

Like flies, mosquito feet are equipped with hooked claws for clinging to skin. Like geckos, they have hairy pads on their feet that stick to nearly any smooth surface with a velcro-like grip. But it's their ability to walk on water that really makes mosquitoes stand out in the animal kingdom.

Both water striders and mosquitoes rely on superhydrophobic (extremely water repelling) legs to allow them to stand on pond surfaces. Water striders' legs do a pretty good job of it, repelling water well enough to support up to 15 times their body weight. Mosquitoes, however, can easily beat that. Experiments now reveal that they repel water so well that each of a mosquito's six legs could support 23 times the insect's weight. The physicists measured the water repellant ability of mosquito legs by attaching an amputated leg to the end of a needle and recording the force as they pushed it down into a container of water.

The secret to mosquito water walking appears to be feathery scales a few microns across that in turn are covered with nanoscopic ribbing, forming what the physicists have dubbed (in an apparent fit of excessive prefixing) a micronanostructure. So the next time a mosquito lands on your arm, take a moment to ponder its impressive and versatile leg adaptations -- then squish it before it sucks your blood. - JR

James Riordon | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1
21.03.2018 | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

nachricht Taming chaos: Calculating probability in complex systems
21.03.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>