Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nano propellers pump with proper chemistry

18.07.2007
The ability to pump liquids at the cellular scale opens up exciting possibilities, such as precisely targeting medicines and regulating flow into and out of cells. But designing this molecular machinery has proven difficult.

Now chemists at the University of Illinois at Chicago have created a theoretical blueprint for assembling a nanoscale propeller with molecule-sized blades.

The work is featured in Research Highlights in the July 12 issue of Nature and was described in the June 28 cover story of Physical Review Letters.

Using classical molecular dynamics simulations, Petr Král, assistant professor of chemistry at UIC, and his laboratory coworkers were able to study realistic conditions in this microscopic environment to learn how the tiny propellers pump liquids.

While previous research has looked at how molecular devices rotate in flowing gases, Král and his group are the first to look at molecular propeller pumping of liquids, notably water and oils.

"We want to see what happens when the propellers get to the scale where it's impossible to reduce the size of the blades any more," said Král.

Král's group found that at the molecular level -- unlike at the macro level -- the chemistry of the propeller's blades and their sensitivity to water play a big role in determining whether the propeller pumps efficiently or just spins with little effect. If the blades have a hydrophobic, or water-repelling nature, they pump a lot of water. But if they are hydrophilic -- water-attracting -- they become clogged with water molecules and pump poorly.

"Pumping rates and efficiencies in the hydrophilic and hydrophobic forms can differ by an order of magnitude, which was not expected," he said.

The UIC researchers found that propeller pumping efficiency in liquids is highly sensitive to the size, shape, chemical or biological composition of the blades.

"In principle, we could even attach some biological molecules to the blades and form a propeller that would work only if other molecules bio-compatible with the blades are in the pumped solution," he said.

The findings present new factors to consider in developing nanoscale liquid-pumping machines, but Král added that such technology probably won't become reality for several years, given the difficult nature of constructing such ultra-small devices.

Král's laboratory studies how biological systems, like tiny flagella that move bacteria, offer clues for building motors, motile systems and other nanoscale devices in a hybrid environment that combines biological and inorganic chemistry.

"The 21st century will be about hybrid biological and artificial nanoscale systems and their mutual co-evolution," Král predicts. "My group alone is working on about a half-dozen such projects. I'm optimistic about such nanoscale developments."

Paul Francuch | EurekAlert!
Further information:
http://www.uic.edu

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>