Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New particle explains odd behavior in cuprate superconductors

18.07.2007
New fundamental particles aren't found only at Fermilab and at other particle accelerators. They also can be found hiding in plain pieces of ceramic, scientists at the University of Illinois report.
The newly formulated particle is a boson and has a charge of 2e, but does not consist of two electrons, the scientists say. The particle arises from the strong, repulsive interactions between electrons, and provides another piece of the high-temperature superconductivity puzzle.

Twenty-one years ago, superconductivity at high temperatures was discovered in copper-oxide ceramics (cuprates). Existing explanations of superconductivity proved inadequate because, unlike low-temperature superconductors, which are metals, the parent materials from which all high-temperature superconductors arise are insulators.

Now, a new theory suggests something has been overlooked. "Hidden in the copper-oxide materials is a new particle, a boson with a charge of 2e," said Philip Phillips, a professor of physics at Illinois.

Surprisingly, this boson is not formed from the elementary excitations - that is, electrons and ions. Instead, the particle emerges as a remnant of the strong interactions between electrons in the normal state.

"High- and low-energy scales are inextricably coupled in the cuprates," Phillips said. "Normally, when you remove a single electron from most systems, one empty state is created. In the cuprates, however, when you remove an electron, you create two empty states - both of which occur at low energy, but paradoxically, one of the states comes from the high-energy scale."

Experimental evidence of this "one to two" phenomenon was first reported in 1990 and explained phenomenologically by University of Groningen physicist George A. Sawatzky (now at the University of British Columbia) and colleagues. What was missing was a low-energy theory that explained how a high-energy state could live at low energy.

Phillips, with physics professor Robert G. Leigh and graduate student Ting-Pong Choy, have constructed such a theory, and have shown that a charged 2e boson makes this all possible.

"When this 2e boson binds with a hole, the result is a new electronic state that has a charge of e," Phillips said. "In this case, the electron is a combination of this new state and the standard, low-energy state. Electrons are not as simple as we thought."

The new boson is an example of an emergent phenomenon - something that can't be seen in any of the constituents, but is present as the constituents interact with one another.

By constructing a low-energy theory of the cuprates, the researchers have moved a step closer to unraveling the mystery of high-temperature superconductivity.

"Until we understand how these materials behave in their normal state, we cannot understand the mechanism behind their high-temperature superconductivity," Phillips said.

Phillips, Leigh and Choy present their mathematical proof for the new boson in a paper accepted for publication in the journal Physical Review Letters. The National Science Foundation provided partial funding for this work.

Editor's note: To reach Philip Phillips, call 217-244-2003; e-mail:
dimer@uiuc.edu.

To view or to subscribe to the RSS feed for Science News at Illinois, please go to: http://webtools.uiuc.edu/rssManager/608/rss.xml.

James E. Kloeppel | University of Illinois
Further information:
http://www.news.uiuc.edu

More articles from Physics and Astronomy:

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

nachricht NASA team finds noxious ice cloud on saturn's moon titan
19.10.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>