Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wobbly polarity is key to preventing magnetic avalanches on disk drives

17.07.2007
Push two magnets together and you'll set off an avalanche of activity, forcing atoms on each magnet to align their polarity with the intruding magnetic field. It may sound like a party trick for physicists, but you do it every time you press "Save" on your computer.

New research brings models of magnetic avalanches much closer to reality, helping physicists understand both why they happen and why they don't run out of control, wiping disk drives clean. The research, by Joshua Deutsch, professor of physics at the University of California, Santa Cruz, and Andreas Berger, who did the research while at Hitachi Global Storage Technologies, appeared in the July 13 online edition of Physical Review Letters. The knowledge may help engineers design more reliable materials for disk drives.

Correcting even a single typo in an e-mail means changing dozens of bits of information. For each bit, a magnetic head grazes a tiny patch of your disk drive, forcing its polarity, or "spin," to align up or down--the magnetic equivalent of a one or a zero. The patch's polarity in many magnetic materials changes in a haphazard series of large and small jumps that physicists liken to an avalanche--though Deutsch's research shows it often behaves more like an explosion or runaway fire.

"The big advance in this paper is that in previous models of avalanches, the spin just flips from up to down as soon as they apply a magnetic field, and they're done. But that's not the way spin behaves in the real world," Deutsch said.

Deutsch and Berger realized that such an ideal model overlooked an effect, called spin precession, that each magnetic field exerts on its neighbors. They envisioned an individual bit of information as a tiny pincushion bristling with individual magnetic fields. As the disk drive head nears, each pin tends to wobble in a widening circle--pointing neither up nor down but somewhere in between--before it settles on its new polarity. That wobbling is called precession and resembles the way a spinning top draws out circles as it rotates.

"It takes around a few nanoseconds for a precession to die down," said Deutsch. "That's not that fast compared to computers today. It's not as fast as the time-scale you get for a transistor to switch." (A nanosecond is one-billionth of a second.) During that brief time, each magnetic field contributes forces that affect the precession of neighboring fields.

"There's a lot of stored energy in a magnet. It's sort of a battery in a way," Deutsch said. "As each spin flips from up to down, it liberates a small amount of energy that can do more work."

The combined effects can add up to a wave of energy that topples adjacent pins and spreads across the magnet's surface.

Deutsch and Berger suggested that one of the reasons that avalanches die down is because the magnetic material has an inherent ability to damp out the spin precession. The damping comes from the way the spins interact with their nonmagnetic surroundings, including electrons and minute vibrations called phonons.

Materials with poor damping are susceptible to long-running avalanches, and those with higher damping would be better candidates for use in disk drives. But all real materials feature much lower damping than the infinite damping assumed in previous models, Deutsch said.

"Obviously, disk drive makers have already learned by an enormous amount of ingenuity and trial and error what materials make good disks," Deutsch said. "But now we understand a lot better one of the reasons why--because the materials are good at damping, and we can quantify how damping will stop runaway avalanches. We still can’t calculate their damping, but at least we can measure it."

Hugh Powell | EurekAlert!
Further information:
http://www.ucsc.edu

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>