Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wobbly polarity is key to preventing magnetic avalanches on disk drives

17.07.2007
Push two magnets together and you'll set off an avalanche of activity, forcing atoms on each magnet to align their polarity with the intruding magnetic field. It may sound like a party trick for physicists, but you do it every time you press "Save" on your computer.

New research brings models of magnetic avalanches much closer to reality, helping physicists understand both why they happen and why they don't run out of control, wiping disk drives clean. The research, by Joshua Deutsch, professor of physics at the University of California, Santa Cruz, and Andreas Berger, who did the research while at Hitachi Global Storage Technologies, appeared in the July 13 online edition of Physical Review Letters. The knowledge may help engineers design more reliable materials for disk drives.

Correcting even a single typo in an e-mail means changing dozens of bits of information. For each bit, a magnetic head grazes a tiny patch of your disk drive, forcing its polarity, or "spin," to align up or down--the magnetic equivalent of a one or a zero. The patch's polarity in many magnetic materials changes in a haphazard series of large and small jumps that physicists liken to an avalanche--though Deutsch's research shows it often behaves more like an explosion or runaway fire.

"The big advance in this paper is that in previous models of avalanches, the spin just flips from up to down as soon as they apply a magnetic field, and they're done. But that's not the way spin behaves in the real world," Deutsch said.

Deutsch and Berger realized that such an ideal model overlooked an effect, called spin precession, that each magnetic field exerts on its neighbors. They envisioned an individual bit of information as a tiny pincushion bristling with individual magnetic fields. As the disk drive head nears, each pin tends to wobble in a widening circle--pointing neither up nor down but somewhere in between--before it settles on its new polarity. That wobbling is called precession and resembles the way a spinning top draws out circles as it rotates.

"It takes around a few nanoseconds for a precession to die down," said Deutsch. "That's not that fast compared to computers today. It's not as fast as the time-scale you get for a transistor to switch." (A nanosecond is one-billionth of a second.) During that brief time, each magnetic field contributes forces that affect the precession of neighboring fields.

"There's a lot of stored energy in a magnet. It's sort of a battery in a way," Deutsch said. "As each spin flips from up to down, it liberates a small amount of energy that can do more work."

The combined effects can add up to a wave of energy that topples adjacent pins and spreads across the magnet's surface.

Deutsch and Berger suggested that one of the reasons that avalanches die down is because the magnetic material has an inherent ability to damp out the spin precession. The damping comes from the way the spins interact with their nonmagnetic surroundings, including electrons and minute vibrations called phonons.

Materials with poor damping are susceptible to long-running avalanches, and those with higher damping would be better candidates for use in disk drives. But all real materials feature much lower damping than the infinite damping assumed in previous models, Deutsch said.

"Obviously, disk drive makers have already learned by an enormous amount of ingenuity and trial and error what materials make good disks," Deutsch said. "But now we understand a lot better one of the reasons why--because the materials are good at damping, and we can quantify how damping will stop runaway avalanches. We still can’t calculate their damping, but at least we can measure it."

Hugh Powell | EurekAlert!
Further information:
http://www.ucsc.edu

More articles from Physics and Astronomy:

nachricht Water without windows: Capturing water vapor inside an electron microscope
13.12.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

nachricht Columbia engineers create artificial graphene in a nanofabricated semiconductor structure
13.12.2017 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>