Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

On a Wire or in a Fiber, a Wave is a Wave

16.07.2007
Around the world, students learn about the wave nature of light through the interference patterns of “Young’s double-slit experiment,” first performed more than 200 years ago and still considered among the most beautiful physics experiments. Using an analogous experiment, researchers at Brown and Stanford have shown that a simple analytical model can describe the wave nature of surface plasmon polaritons. Their work suggests that plasmonic devices cannot easily circumvent the limitations of electromagnetic waves.

In an experiment modeled on the classic “Young’s double slit experiment” and published in the journal Nature Nanotechnology, researchers have powerfully reinforced the understanding that surface plasmon polaritons (SPPs) propagate and diffract just like any other wave. The demonstration reminds researchers and electronics designers that although SPPs move along a metal surface, rather than inside a wire or an optical fiber, they cannot magically overcome the size limitations of conventional optics.

Touted as the next wave of electronics miniaturization, plasmonics describes the movement of SPPs – a type of electromagnetic wave that is bound to a metal surface by its interaction with surface electrons. The emerging technology could provide a bridge between nanoscale electronics and photonics. Conventional electronic devices, in which metal wires carry electrical signals, can be manufactured at the nanoscale but incur long time delays. Photonic – or fiber optic – devices transmit a signal at the speed of light but cannot be miniaturized below a size limit imposed by the wavelength of light that they carry.

Plasmonic devices seem to combine the best of both technologies. Because SPPs are electromagnetic waves they move at near light-speed, but because they ride the surface of wires, it seemed they might circumvent the diffraction limit, which restricts the size of fiber optics.

“We know that these are still essentially electromagnetic waves and therefore they must still obey a diffraction limit,” says Rashid Zia, assistant professor of engineering at Brown University. “The key is to define a set of solutions in a way that is analogous to other systems so that we can derive that limit.”

Zia and Mark Brongersma, an assistant professor of engineering at Stanford University, set out to find an experiment that could test the limits of plasmonic technology and also shed light on the principles that control this still-mysterious kind of wave.

Young’s double slit experiment is usually performed as a demonstration of optical diffraction, although recent variations have also been used to test the quantum behavior of electrons, atoms and even molecules.

In the classic double slit experiment, students shine a light onto a screen through an opaque barrier with two slits in it. When one slit is covered, the pattern of light is brightest directly in front of the slit. When light passes through both slits, a series of light and dark lines appear instead. The light forms a bright line between the slits, where the peaks of the waves reinforce one another and a distinct pattern of darker lines where the peaks and valleys cancel each other out. It’s an elegant demonstration of the wave side of light’s dual nature.

In their experiment, Zia and Brongersma generated an SPP and passed it across two narrow bridges of gold film on a glass slide. As the waves exited onto a broad sheet of gold film, they diffracted to create interference patterns analogous to those seen in Young’s double slit experiment. Using a simple analytical model for the way SPPs are guided along individual metal stripes, the researchers predicted the pattern of diffraction they would see.

Because SPPs are not in the spectrum of visible light, they don’t just show up on a screen. Zia and Brongersma precisely measured the diffraction pattern using a photon scanning tunneling microscope. The pattern they saw closely matched what they predicted using their proposed framework, which is based on an analogy to conventional optics.

The results of this experiment may disappoint some researchers who have hoped that SPPs traveling along metal waveguides could allow circuit design to move seamlessly from electronics to photonics. Instead, Zia sees developing – and challenging – a comprehensive theory as the first step toward devising structures uniquely suited to controlling the movement of SPPs.

“You can couple stripes, you can make slits, you can make all sorts of other geometries that might work,“ said Zia. ”But to see that potential through, you have to have a clear analytical theory and a way to test it.”

Grants from the Department of Defense/Air Force Office of Scientific Research and the National Science Foundation supported this research.

Editors: Brown University has a fiber link television studio available for domestic and international live and taped interview, and maintains an ISDN line for radio interviews. For more information, call (401) 863-2476.

Martha Downs | EurekAlert!
Further information:
http://www.brown.edu

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>