Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unraveling the physics of DNA's double helix

13.07.2007
Researchers at Duke University's Pratt School of Engineering have uncovered a missing link in scientists' understanding of the physical forces that give DNA its famous double helix shape.

"The stability of DNA is so fundamental to life that it's important to understand all factors," said Piotr Marszalek, a professor of mechanical engineering and materials sciences at Duke. "If you want to create accurate models of DNA to study its interaction with proteins or drugs, for example, you need to understand the basic physics of the molecule. For that, you need solid measurements of the forces that stabilize DNA."

In a study published online by Physical Review Letters on July 5, Marszalek's team reports the first direct measurements of the forces within single strands of DNA that wind around each other in pairs to form the complete, double-stranded molecules. The work was supported by the National Science Foundation and the National Institutes of Health.

Each DNA strand includes a sugar and phosphate "backbone" attached to one of four bases, which encode genetic sequences. The strength of the interactions within individual strands comes largely from the chemical attraction between the stacked bases. But the integrity of double-stranded DNA depends on both the stacking forces between base units along the length of the double helix and on the pairing forces between complementary bases, which form the rungs of the twisted ladder.

Earlier studies have focused more attention on the chemical bonds between opposing bases, measuring their strength by "unzipping" the molecules' two strands, Marszalek said. Studies of intact DNA make it difficult for researchers to separate the stacking from the pairing forces.

To get around that problem in the new study, the Duke team used an atomic force microscope (AFM) to capture the "mechanical fingerprint" of the attraction between bases within DNA strands. The bonds within the molecules' sugar and phosphate backbones remained intact and therefore had only a minor influence on the force measurements, Marszalek said.

They tugged on individual strands that were tethered at one end to gold and measured the changes in force as they pulled. The AFM technique allows precise measurements of forces within individual molecules down to one pico-Newton--a trillionth of a Newton. For a sense of scale, the force of gravity on a two-liter bottle of soda is about 20 Newtons, Marszalek noted.

They captured the range of stacking forces by measuring two types of synthetic DNA strands: some made up only of the base thymine, which is known to have the weakest attraction between stacked units, and some made up only of the base adenine, known to have the strongest stacking forces. Because of those differences in chemical forces, the two types of single-stranded DNA take on different structures, Marszalek said. Single strands of adenine coil in a fairly regular fashion to form a helix of their own, while thymine chains take on a more random shape.

The pure adenine strands exhibited an even more complex form of elasticity than had been anticipated, the researchers reported. As they stretched the adenine chains with increasing force, the researchers noted two places—at 23 and 113 pico-Newtons--where their measurements leveled off.

"Those plateaus reflect the breaking and unfolding of the helix," Marszalek explained. With no bonds between bases to break, the thymine chains' showed little resistance to extension and no plateau.

Based on the known structure of the single stranded DNA molecules, they had expected to see only one such plateau as the stacking forces severed. Exactly what happens at the molecular level at each of the two plateaus will be the subject of continued investigation, he said.

Kendall Morgan | EurekAlert!
Further information:
http://www.duke.edu

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>