Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Arizona State scientists keep an eye on Martian dust storm

13.07.2007
Scientists at Arizona State University's Mars Space Flight Center are using the Thermal Emission Imaging System (THEMIS) on NASA's Mars Odyssey orbiter to monitor a large dust storm on the Red Planet. The instrument, a multi-wavelength camera sensitive to five visible wavelengths and 10 infrared ones, is providing Mars scientists and spacecraft controllers with global maps that track how much atmospheric dust is obscuring the planet.

The dust storm, which erupted during the last week of June 2007, is affecting operations for all five spacecraft operating at Mars. The fleet includes two NASA rovers on the ground (Spirit and Opportunity), plus three orbiters, two of which belong to NASA (Mars Odyssey and Mars Reconnaissance Orbiter) and one to the European Space Agency (Mars Express).

Beginning in Mars' heavily cratered southern highlands, the dust storm took roughly a week to grow large enough to encircle the planet. Dust has now drifted into the northern hemisphere as well.

"This is the favorable time of the Martian year for dust storms," says Joshua Bandfield, research associate at the Mars Space Flight Facility. The facility is part of the School of Earth and Space Exploration in ASU's College of Liberal Arts and Sciences.

"It's summer in the southern hemisphere," he says, "That's when Mars lies closest to the sun and solar heating is greatest."

Bandfield adds, "We can watch weather fronts spreading and kicking up dust in a big way." He explains that as winds sweep dust into the atmosphere, the atmosphere becomes warmer. This adds to the storm's power, helping it to pick up more dust. But the process has a built-in limitation, he says. "When the dust becomes thick enough, it reflects more sunlight from the atmosphere, allowing the air near the surface to cool."

As seen from orbit, the dust storm has the effect of veiling surface features – or even concealing them completely, which hasn't happened yet in this event. "This storm isn't as big or severe as the one in 2001," Bandfield says. "THEMIS and other orbiters can still see the surface, despite the continuing dust activity."

From the ground, the dust in the air has cut the amount of sunlight reaching the rovers' solar panels and reducing their electrical power. "If you were standing there, you'd see the sky looking tawny with haze," explains Bandfield. "The sun would appear as a sharp-edged disk, but the light level would be noticeably lower than what you would see under a totally clear sky."

Luckily, say scientists, summer is a time when the rovers can best survive under reduced power. If the storm had struck during local winter, the rovers might not get enough power during the day to stay alive through the cold Martian night.

How long will this storm last" No one knows for sure, but Bandfield notes its effects won't disappear as quickly as the storm erupted. "Mars," he says, "will remain dusty for at least a couple months more."

Robert Burnham | EurekAlert!
Further information:
http://www.asu.edu

More articles from Physics and Astronomy:

nachricht Temperature-controlled fiber-optic light source with liquid core
20.06.2018 | Leibniz-Institut für Photonische Technologien e. V.

nachricht New material for splitting water
19.06.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>