Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


AKARI presents detailed all-sky map in infrared light

One year after the beginning of its scientific operations, the high-capability infrared satellite AKARI continues to produce stunning views of the infrared Universe.

Launched in February 2006, AKARI is making a comprehensive, multi-wavelength study of the sky in infrared light, helping to gain a deeper understanding of the formation and evolution of galaxies, stars and planetary systems. The mission is a Japan Aerospace Exploration Agency (JAXA) project with ESA and international participation.

In the course of last year, AKARI performed all-sky observations in six wavelength bands. More than 90 percent of the entire sky has so far been imaged. The mission provides the first census of the infrared sky since the atlas made by its only infrared surveyor predecessor, the Anglo-Dutch-US IRAS satellite more than 20 years ago. AKARI has studied about 3500 selected targets during pointed observations, with improved spatial resolution.

The latest results presented by JAXA today show the infrared sky with unprecedented spatial resolution and wavelength coverage and, in particular, many regions of active star formation.

The first two images presented in this article show the entire sky in infrared light at nine micrometres. The bright stripe extending from left to right is the disc of our own Milky Way Galaxy. Several bright regions corresponding to strong infrared radiation appear along or next to the Galactic Plane. These regions are sites of newly born stars. At the brightest region in the very centre of the image, towards the centre of our Galaxy, old stars crowd together. AKARI observed the infrared radiation emitted from the heated interstellar dust.

The inscriptions indicate constellations and regions of intense star formation. The data used to create this image have a spatial resolution of about nine arcseconds, several times finer than IRAS in 1983. Further detailed analysis of this data will help to learn more about the physical conditions of these star formation regions.

The bright spot on the lower-right of the image, indicated as the ‘Large Magellanic Cloud’ shows another galaxy close to our Milky Way, also undergoing active star formation. Even though not visible at the current resolution of this image, there are many more galaxies in the Universe with intense star formation processes. It is one of AKARI’s prime targets to observe these galaxies and build up a comprehensive picture of the star formation history of the Universe.

AKARI’s Far Infrared Surveyor (FIS) instrument also observed the Milky Way and the Orion region. In this image, two views at visual light (left) and infrared light (right) are juxtaposed, both covering a region of about 30x40 square degrees. AKARI’s view is taken at 140 micrometres. For the first time ever, AKARI provided coverage of the Orion region at infrared wavelengths longer than 100 micrometres at such fine resolution.

The right side of the image covers the constellation Orion while the left side shows the Monoceros. The Galactic Plane is located from the top to bottom in the left side of the image. Cold dust in the Galactic Plane appears as diffuse radiation over the entire image.

The very bright source just below the belt of Orion shows the famous Orion Nebula (M42), where many stars are being born. Another major star-forming region including the Horse Head nebula can be seen on the left side of Orion's belt. In contrast to its appearance as a dark cloud in visible light, it is extremely bright in the infrared. The bright extended emission seen in the middle-left part of the image is the so-called Rosette Nebula, yet another star-forming region. Finally, the big circular structure centred at the head of Orion is clearly visible. Apparently many massive stars were formed at the centre of the circle, causing a corresponding series of supernova explosions that has swept out the dust and gas in the region forming a shell-like structure.

The Orion Nebula is located about 1500 light years away from Earth; the Rosetta nebula 3600 light years.

This false-colour composite was obtained by AKARI’s Far Infrared Surveyor (FIS) instrument at 90 and 140 micrometres. It shows star-forming regions in the constellation Cygnus, one of the brightest regions in the Milky Way. The image covers 7.6 x 10.0 square degrees. This region is in a direction along the so-called ‘Orion arm’, one of the spiral arms of our Galaxy. Many objects at distances of three thousand to ten thousand light years are projected on this small region. The Galactic plane appears from the top-left to bottom-right.

The many bright spots in the image reveal regions where new stars are being born. They heat up the dust and ionize the gas in their vicinity producing strong infrared radiation. There are only a small number of regions in our Galaxy that exhibit so many massive star-forming regions over such a restricted area of the sky.

The large, dark hollows, also clearly visible on the image, developed from clusters of massive, high-temperature stars that have blown away the surrounding gas and dust by their strong radiation.

Alberto Salama | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>