Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

AKARI presents detailed all-sky map in infrared light

12.07.2007
One year after the beginning of its scientific operations, the high-capability infrared satellite AKARI continues to produce stunning views of the infrared Universe.

Launched in February 2006, AKARI is making a comprehensive, multi-wavelength study of the sky in infrared light, helping to gain a deeper understanding of the formation and evolution of galaxies, stars and planetary systems. The mission is a Japan Aerospace Exploration Agency (JAXA) project with ESA and international participation.

In the course of last year, AKARI performed all-sky observations in six wavelength bands. More than 90 percent of the entire sky has so far been imaged. The mission provides the first census of the infrared sky since the atlas made by its only infrared surveyor predecessor, the Anglo-Dutch-US IRAS satellite more than 20 years ago. AKARI has studied about 3500 selected targets during pointed observations, with improved spatial resolution.

The latest results presented by JAXA today show the infrared sky with unprecedented spatial resolution and wavelength coverage and, in particular, many regions of active star formation.

The first two images presented in this article show the entire sky in infrared light at nine micrometres. The bright stripe extending from left to right is the disc of our own Milky Way Galaxy. Several bright regions corresponding to strong infrared radiation appear along or next to the Galactic Plane. These regions are sites of newly born stars. At the brightest region in the very centre of the image, towards the centre of our Galaxy, old stars crowd together. AKARI observed the infrared radiation emitted from the heated interstellar dust.

The inscriptions indicate constellations and regions of intense star formation. The data used to create this image have a spatial resolution of about nine arcseconds, several times finer than IRAS in 1983. Further detailed analysis of this data will help to learn more about the physical conditions of these star formation regions.

The bright spot on the lower-right of the image, indicated as the ‘Large Magellanic Cloud’ shows another galaxy close to our Milky Way, also undergoing active star formation. Even though not visible at the current resolution of this image, there are many more galaxies in the Universe with intense star formation processes. It is one of AKARI’s prime targets to observe these galaxies and build up a comprehensive picture of the star formation history of the Universe.

AKARI’s Far Infrared Surveyor (FIS) instrument also observed the Milky Way and the Orion region. In this image, two views at visual light (left) and infrared light (right) are juxtaposed, both covering a region of about 30x40 square degrees. AKARI’s view is taken at 140 micrometres. For the first time ever, AKARI provided coverage of the Orion region at infrared wavelengths longer than 100 micrometres at such fine resolution.

The right side of the image covers the constellation Orion while the left side shows the Monoceros. The Galactic Plane is located from the top to bottom in the left side of the image. Cold dust in the Galactic Plane appears as diffuse radiation over the entire image.

The very bright source just below the belt of Orion shows the famous Orion Nebula (M42), where many stars are being born. Another major star-forming region including the Horse Head nebula can be seen on the left side of Orion's belt. In contrast to its appearance as a dark cloud in visible light, it is extremely bright in the infrared. The bright extended emission seen in the middle-left part of the image is the so-called Rosette Nebula, yet another star-forming region. Finally, the big circular structure centred at the head of Orion is clearly visible. Apparently many massive stars were formed at the centre of the circle, causing a corresponding series of supernova explosions that has swept out the dust and gas in the region forming a shell-like structure.

The Orion Nebula is located about 1500 light years away from Earth; the Rosetta nebula 3600 light years.

This false-colour composite was obtained by AKARI’s Far Infrared Surveyor (FIS) instrument at 90 and 140 micrometres. It shows star-forming regions in the constellation Cygnus, one of the brightest regions in the Milky Way. The image covers 7.6 x 10.0 square degrees. This region is in a direction along the so-called ‘Orion arm’, one of the spiral arms of our Galaxy. Many objects at distances of three thousand to ten thousand light years are projected on this small region. The Galactic plane appears from the top-left to bottom-right.

The many bright spots in the image reveal regions where new stars are being born. They heat up the dust and ionize the gas in their vicinity producing strong infrared radiation. There are only a small number of regions in our Galaxy that exhibit so many massive star-forming regions over such a restricted area of the sky.

The large, dark hollows, also clearly visible on the image, developed from clusters of massive, high-temperature stars that have blown away the surrounding gas and dust by their strong radiation.

Alberto Salama | alfa
Further information:
http://www.esa.int/esaSC/SEM4OXGYX3F_index_0.html

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>