New phenomenon in physics discovered on illumination of metal surfaces

The discovery, known as acoustic plasmon, could have applications in the design of ultra-high velocity electronic devices for data storage, for use in nano-optics or biomaterials, as well as in the creation of new materials for medical applications.

A plasmon is a charged wave formed by the group excitation of electrons. An acoustic plasmon is a type of surface plasmon produced by the interaction between light and metal surfaces.

The main difference between common surface plasmons – known for half a century – and the new, acoustic plasmons is that each of these is created with a different amount of energy. The acoustic plasmon multiplies its possible applications on using less energy.

In concrete, while common surface plasmons need 10 electron-volts of energy to become excited – a relatively high value for many technological applications – the acoustic plasmon can be triggered into an excited state with very low levels of energy input – less than 1 electron-volt.

One of the authors of the research, Eugene Chulkov, who works at the Centre of Materials Physics, explains the find as follows: “When light falls on a metal surface, the metal electrons interact with the electromagnetic field of light and create other waves, called plasmons”.

Chulkov provides a more graphic example in order to understand the phenomenom: “The charged waves that produces the light fall on the metallic surface in the same way as ripples are made by a stone thrown into a pond “.

Chulkov admits that it may seem strange to use metallic structures to transmit light, as it is well known that light quickly attenuates on passing through a metal. “Nevertheless”, he adds, “the situation is different if one thinks of surface plasmons, given that the waves may travel several centimetres over a surface before losing their energy, a feature that could be useful in biomedicine and nanotechnology”.

Nanometric applications

Research into this phenomenon could be useful in the design of metallic surfaces on a nanometric scale and on which the properties of the plasmons propagated by these surfaces, themselves, may be modified or manipulated.

This work has been led by physicist Pedro Miguel Etxenike, President of the Donostia International Physics Center, in collaboration with scientists from the CSIC, the UPV/EHU, the CIC Nanogune and the Universidad Autónoma of Madrid.

The research team has suggested baptizing the new phenomenon “the Silkin Plasmon” in recognition of the sterling work undertaken by scientist Slava Silkin, who works at the Donostia International Physics Center.

Media Contact

Irati Kortabitarte alfa

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Lighting up the future

New multidisciplinary research from the University of St Andrews could lead to more efficient televisions, computer screens and lighting. Researchers at the Organic Semiconductor Centre in the School of Physics and…

Researchers crack sugarcane’s complex genetic code

Sweet success: Scientists created a highly accurate reference genome for one of the most important modern crops and found a rare example of how genes confer disease resistance in plants….

Evolution of the most powerful ocean current on Earth

The Antarctic Circumpolar Current plays an important part in global overturning circulation, the exchange of heat and CO2 between the ocean and atmosphere, and the stability of Antarctica’s ice sheets….

Partners & Sponsors