New phenomenon in physics discovered on illumination of metal surfaces

The discovery, known as acoustic plasmon, could have applications in the design of ultra-high velocity electronic devices for data storage, for use in nano-optics or biomaterials, as well as in the creation of new materials for medical applications.

A plasmon is a charged wave formed by the group excitation of electrons. An acoustic plasmon is a type of surface plasmon produced by the interaction between light and metal surfaces.

The main difference between common surface plasmons – known for half a century – and the new, acoustic plasmons is that each of these is created with a different amount of energy. The acoustic plasmon multiplies its possible applications on using less energy.

In concrete, while common surface plasmons need 10 electron-volts of energy to become excited – a relatively high value for many technological applications – the acoustic plasmon can be triggered into an excited state with very low levels of energy input – less than 1 electron-volt.

One of the authors of the research, Eugene Chulkov, who works at the Centre of Materials Physics, explains the find as follows: “When light falls on a metal surface, the metal electrons interact with the electromagnetic field of light and create other waves, called plasmons”.

Chulkov provides a more graphic example in order to understand the phenomenom: “The charged waves that produces the light fall on the metallic surface in the same way as ripples are made by a stone thrown into a pond “.

Chulkov admits that it may seem strange to use metallic structures to transmit light, as it is well known that light quickly attenuates on passing through a metal. “Nevertheless”, he adds, “the situation is different if one thinks of surface plasmons, given that the waves may travel several centimetres over a surface before losing their energy, a feature that could be useful in biomedicine and nanotechnology”.

Nanometric applications

Research into this phenomenon could be useful in the design of metallic surfaces on a nanometric scale and on which the properties of the plasmons propagated by these surfaces, themselves, may be modified or manipulated.

This work has been led by physicist Pedro Miguel Etxenike, President of the Donostia International Physics Center, in collaboration with scientists from the CSIC, the UPV/EHU, the CIC Nanogune and the Universidad Autónoma of Madrid.

The research team has suggested baptizing the new phenomenon “the Silkin Plasmon” in recognition of the sterling work undertaken by scientist Slava Silkin, who works at the Donostia International Physics Center.

Media Contact

Irati Kortabitarte alfa

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors