Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New phenomenon in physics discovered on illumination of metal surfaces

12.07.2007
Scientific research at the Centre of the Physics of Materials, a mixed venture of the Higher Council for Scientific Research (CSIC) and the University of the Basque Country (UPV/EHU) in Donostia-San Sebastian, has enabled the discovery of a new physical phenomenon that affects the surfaces of illuminated metals. The conclusions of the research have been published in the journal Nature.

The discovery, known as acoustic plasmon, could have applications in the design of ultra-high velocity electronic devices for data storage, for use in nano-optics or biomaterials, as well as in the creation of new materials for medical applications.

A plasmon is a charged wave formed by the group excitation of electrons. An acoustic plasmon is a type of surface plasmon produced by the interaction between light and metal surfaces.

The main difference between common surface plasmons – known for half a century – and the new, acoustic plasmons is that each of these is created with a different amount of energy. The acoustic plasmon multiplies its possible applications on using less energy.

In concrete, while common surface plasmons need 10 electron-volts of energy to become excited – a relatively high value for many technological applications – the acoustic plasmon can be triggered into an excited state with very low levels of energy input – less than 1 electron-volt.

One of the authors of the research, Eugene Chulkov, who works at the Centre of Materials Physics, explains the find as follows: "When light falls on a metal surface, the metal electrons interact with the electromagnetic field of light and create other waves, called plasmons".

Chulkov provides a more graphic example in order to understand the phenomenom: "The charged waves that produces the light fall on the metallic surface in the same way as ripples are made by a stone thrown into a pond ".

Chulkov admits that it may seem strange to use metallic structures to transmit light, as it is well known that light quickly attenuates on passing through a metal. "Nevertheless", he adds, "the situation is different if one thinks of surface plasmons, given that the waves may travel several centimetres over a surface before losing their energy, a feature that could be useful in biomedicine and nanotechnology".

Nanometric applications

Research into this phenomenon could be useful in the design of metallic surfaces on a nanometric scale and on which the properties of the plasmons propagated by these surfaces, themselves, may be modified or manipulated.

This work has been led by physicist Pedro Miguel Etxenike, President of the Donostia International Physics Center, in collaboration with scientists from the CSIC, the UPV/EHU, the CIC Nanogune and the Universidad Autónoma of Madrid.

The research team has suggested baptizing the new phenomenon “the Silkin Plasmon” in recognition of the sterling work undertaken by scientist Slava Silkin, who works at the Donostia International Physics Center.

Irati Kortabitarte | alfa
Further information:
http://www.basqueresearch.com/berria_irakurri.asp?Berri_Kod=1393&hizk=I

More articles from Physics and Astronomy:

nachricht Ultra-compact phase modulators based on graphene plasmons
27.06.2017 | ICFO-The Institute of Photonic Sciences

nachricht Smooth propagation of spin waves using gold
26.06.2017 | Toyohashi University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>