Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Search for the water of life - UCL astronomers find water on extra-solar planet

12.07.2007
Researchers at UCL (University College London) are part of an international team which has discovered water on an extra-solar planet for the first time. Findings will be published in this week’s Nature (July 12).

‘Extra-solar’ planets are those outside our Solar System and more than 200 have been discovered orbiting stars close to our own Sun. The planet with water in its atmosphere is known as HD 189733b, and orbits a star in the constellation of Vulpecula the Fox, which is 64 light years from the Sun. HD 189733b is known as a “transiting planet” because it passes directly in front of its star, as viewed from the Earth.

The researchers, led by Dr Giovanna Tinetti of the European Space Agency and UCL’s Department of Physics & Astronomy, found that as HD 189733b passes in front of its ‘sun’, it absorbs starlight in a way that can only be explained by the presence of water vapour in its atmosphere. This is the first time that astronomers have been able to confirm that water is present on an extra-solar planet.

Dr Tinetti, who has recently taken up a prestigious Aurora Fellowship at UCL, said: “Although HD 189733b is far from being habitable, and actually provides a rather hostile environment, our discovery shows that water might be more common out there than previously thought, and our method can be used in the future to study more ‘life-friendly’ environments.”

The discovery was made using NASA’s Spitzer Earth-orbiting telescope, taking measurements at a number of key wavelengths in the infrared region of the spectrum that pick out the crucial signature of water. The water detection relied not only on Dr Tinetti’s painstaking analysis, but also on the calculation of highly accurate water absorption parameters by Dr Bob Barber and Professor Jonathan Tennyson, both of UCL’s Department of Physics & Astronomy.

Dr Barber said: “The absorption parameters were calculated from our Barber-Tennyson list of water vapour spectral lines. This includes over 500 million individual absorption features, each like fingerprints, giving us vital clues to the amount of water present and the temperature of the atmosphere.”

Professor Tennyson, who heads UCL’s Physics & Astronomy Department, explained: “Parts of the atmosphere of HD 189733b are very hot – around 2,000 degrees. You need the millions of lines we calculated to simulate this, putting in absorption accurately where it should be and – just as accurately – giving gaps for the light to get through the atmosphere, where it can.”

HD 189733 is a star very much like our own Sun, although a little cooler. Its planet is not like Earth, however. HD 189733b is a gas giant planet, about 15 per cent bigger than Jupiter. However, while Jupiter is over five times as far away from the Sun as our Earth is, HD 189733b is more than 30 times closer to its star than the Earth is to the Sun – explaining why it’s so hot.

Dr Tinetti added: “The ‘holy grail’ for today’s planet hunters is to find an Earth-like planet that also has water in its atmosphere. When it happens, that discovery will provide real evidence that planets outside our Solar System might harbour life. Finding the existence of water on an extra-solar gas giant is a vital milestone along that road of discovery.”

David Weston | alfa
Further information:
http://www.ucl.ac.uk

More articles from Physics and Astronomy:

nachricht Extremely fine measurements of motion in orbiting supermassive black holes
28.06.2017 | Stanford University

nachricht Ultra-compact phase modulators based on graphene plasmons
27.06.2017 | ICFO-The Institute of Photonic Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Extensive Funding for Research on Chromatin, Adrenal Gland, and Cancer Therapy

28.06.2017 | Awards Funding

Predicting eruptions using satellites and math

28.06.2017 | Earth Sciences

Extremely fine measurements of motion in orbiting supermassive black holes

28.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>