Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Search for the water of life - UCL astronomers find water on extra-solar planet

12.07.2007
Researchers at UCL (University College London) are part of an international team which has discovered water on an extra-solar planet for the first time. Findings will be published in this week’s Nature (July 12).

‘Extra-solar’ planets are those outside our Solar System and more than 200 have been discovered orbiting stars close to our own Sun. The planet with water in its atmosphere is known as HD 189733b, and orbits a star in the constellation of Vulpecula the Fox, which is 64 light years from the Sun. HD 189733b is known as a “transiting planet” because it passes directly in front of its star, as viewed from the Earth.

The researchers, led by Dr Giovanna Tinetti of the European Space Agency and UCL’s Department of Physics & Astronomy, found that as HD 189733b passes in front of its ‘sun’, it absorbs starlight in a way that can only be explained by the presence of water vapour in its atmosphere. This is the first time that astronomers have been able to confirm that water is present on an extra-solar planet.

Dr Tinetti, who has recently taken up a prestigious Aurora Fellowship at UCL, said: “Although HD 189733b is far from being habitable, and actually provides a rather hostile environment, our discovery shows that water might be more common out there than previously thought, and our method can be used in the future to study more ‘life-friendly’ environments.”

The discovery was made using NASA’s Spitzer Earth-orbiting telescope, taking measurements at a number of key wavelengths in the infrared region of the spectrum that pick out the crucial signature of water. The water detection relied not only on Dr Tinetti’s painstaking analysis, but also on the calculation of highly accurate water absorption parameters by Dr Bob Barber and Professor Jonathan Tennyson, both of UCL’s Department of Physics & Astronomy.

Dr Barber said: “The absorption parameters were calculated from our Barber-Tennyson list of water vapour spectral lines. This includes over 500 million individual absorption features, each like fingerprints, giving us vital clues to the amount of water present and the temperature of the atmosphere.”

Professor Tennyson, who heads UCL’s Physics & Astronomy Department, explained: “Parts of the atmosphere of HD 189733b are very hot – around 2,000 degrees. You need the millions of lines we calculated to simulate this, putting in absorption accurately where it should be and – just as accurately – giving gaps for the light to get through the atmosphere, where it can.”

HD 189733 is a star very much like our own Sun, although a little cooler. Its planet is not like Earth, however. HD 189733b is a gas giant planet, about 15 per cent bigger than Jupiter. However, while Jupiter is over five times as far away from the Sun as our Earth is, HD 189733b is more than 30 times closer to its star than the Earth is to the Sun – explaining why it’s so hot.

Dr Tinetti added: “The ‘holy grail’ for today’s planet hunters is to find an Earth-like planet that also has water in its atmosphere. When it happens, that discovery will provide real evidence that planets outside our Solar System might harbour life. Finding the existence of water on an extra-solar gas giant is a vital milestone along that road of discovery.”

David Weston | alfa
Further information:
http://www.ucl.ac.uk

More articles from Physics and Astronomy:

nachricht Neutron star merger directly observed for the first time
17.10.2017 | University of Maryland

nachricht Breaking: the first light from two neutron stars merging
17.10.2017 | American Association for the Advancement of Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>