Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Search for the water of life - UCL astronomers find water on extra-solar planet

12.07.2007
Researchers at UCL (University College London) are part of an international team which has discovered water on an extra-solar planet for the first time. Findings will be published in this week’s Nature (July 12).

‘Extra-solar’ planets are those outside our Solar System and more than 200 have been discovered orbiting stars close to our own Sun. The planet with water in its atmosphere is known as HD 189733b, and orbits a star in the constellation of Vulpecula the Fox, which is 64 light years from the Sun. HD 189733b is known as a “transiting planet” because it passes directly in front of its star, as viewed from the Earth.

The researchers, led by Dr Giovanna Tinetti of the European Space Agency and UCL’s Department of Physics & Astronomy, found that as HD 189733b passes in front of its ‘sun’, it absorbs starlight in a way that can only be explained by the presence of water vapour in its atmosphere. This is the first time that astronomers have been able to confirm that water is present on an extra-solar planet.

Dr Tinetti, who has recently taken up a prestigious Aurora Fellowship at UCL, said: “Although HD 189733b is far from being habitable, and actually provides a rather hostile environment, our discovery shows that water might be more common out there than previously thought, and our method can be used in the future to study more ‘life-friendly’ environments.”

The discovery was made using NASA’s Spitzer Earth-orbiting telescope, taking measurements at a number of key wavelengths in the infrared region of the spectrum that pick out the crucial signature of water. The water detection relied not only on Dr Tinetti’s painstaking analysis, but also on the calculation of highly accurate water absorption parameters by Dr Bob Barber and Professor Jonathan Tennyson, both of UCL’s Department of Physics & Astronomy.

Dr Barber said: “The absorption parameters were calculated from our Barber-Tennyson list of water vapour spectral lines. This includes over 500 million individual absorption features, each like fingerprints, giving us vital clues to the amount of water present and the temperature of the atmosphere.”

Professor Tennyson, who heads UCL’s Physics & Astronomy Department, explained: “Parts of the atmosphere of HD 189733b are very hot – around 2,000 degrees. You need the millions of lines we calculated to simulate this, putting in absorption accurately where it should be and – just as accurately – giving gaps for the light to get through the atmosphere, where it can.”

HD 189733 is a star very much like our own Sun, although a little cooler. Its planet is not like Earth, however. HD 189733b is a gas giant planet, about 15 per cent bigger than Jupiter. However, while Jupiter is over five times as far away from the Sun as our Earth is, HD 189733b is more than 30 times closer to its star than the Earth is to the Sun – explaining why it’s so hot.

Dr Tinetti added: “The ‘holy grail’ for today’s planet hunters is to find an Earth-like planet that also has water in its atmosphere. When it happens, that discovery will provide real evidence that planets outside our Solar System might harbour life. Finding the existence of water on an extra-solar gas giant is a vital milestone along that road of discovery.”

David Weston | alfa
Further information:
http://www.ucl.ac.uk

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>