Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Akari Maps Warm Universe In Exquisite Detail

11.07.2007
A team of Japanese and European astronomers have mapped the whole sky at infrared wavelengths for the first time in two decades. The new map, produced using the AKARI surveyor is far sharper than its most recent predecessor, completed by the IRAS satellite back in 1984.

Team member Dr Chris Pearson from the Japan Aerospace Exploration Agency (JAXA) and European Space Agency presented the results at this week’s ‘From IRAS to Herschel and Planck’ conference at the Geological Society in London. The meeting is being held to celebrate the 65th birthday of Royal Astronomical Society President Professor Michael Rowan-Robinson.

The AKARI satellite uses a telescope with a 68.5-cm diameter mirror to detect radiation at near-, mid- and far-infrared wavelengths. Many of the cooler objects in the Universe emit infrared radiation that penetrates dust and gas much more readily than visible light, so telescopes like AKARI are able to image objects like forming stars and the centres of galaxies.

AKARI was launched on 21 February 2006 from the Uchinoura Space Center in southern Japan. On current projections, the liquid helium it uses to keep the detectors cold will last until at least 9 September 2007, giving the primary mission a lifetime of about 550 days. Scientists may then extend its life using mechanical coolers to allow observation of sources emitting near-infrared radiation to continue.

The new high-resolution map is assembled from thousands of different images made as the AKARI satellite orbited the Earth gradually scanning the entire sky. One of the released images shows the whole sky as seen by AKARI, with the plane of our Galaxy (the Milky Way) visible as a bright stripe running from left to right. The bright region in the centre of the image is the material surrounding the galactic centre, thought to harbour a giant black hole.

At the lower right of the all-sky image is the Large Magellanic Cloud, a small galaxy that orbits the Milky Way at a distance of about 160,000 light years (or 1.5 million million million km). AKARI images clearly show the regions in this and the other galaxies where stars are forming at a vigorous pace.

Another set of figures shows the region of the sky in the direction of the constellation of Orion, familiar to northern hemisphere observers in the winter months. One image is made with visible light whilst the other image shows the same region depicted using the far-infrared emission detected by AKARI. In both images star-forming regions like the Orion, Rosette and Horsehead nebulae (clouds of gas and dust) are clearly visible. The infrared light from young stars in each nebula heats up their surroundings so much that these regions dominate the AKARI image. At the top right a giant circle of gas is all that remains of a series of explosions that took place when some of the most massive stars ended their lives, sweeping away the surrounding dust and gas.

A fourth image shows the far-infrared view of the constellation of Cygnus, a part of the sky best seen in the northern summer. Bright spots mark other regions of star formation, alongside dark voids cleared by the winds from nearby massive stars. The Milky Way runs from top left to bottom right.

Chris Pearson commented on the new images, “The first comprehensive result from the AKARI mission’s All-Sky Survey is an astoundingly beautiful map of the entire sky. With this image we can see in explicit detail the structure of our own galaxy and the Universe beyond. We are now looking forward to the next images that will show the sky at longer infrared wavelengths.”

Open University scientist and collaborator Dr Stephen Serjeant added, “I'm delighted with this beautiful image of the whole sky. The images of Orion show how strikingly different the sky looks in infrared light. This is our first step towards a comprehensive map of the birth of stars and galaxies in the Universe.”

AKARI will continue to scan the sky at six independent wavelengths until the expiration of the on-board 170 litres of liquid helium, all the while gradually building up a multi-colour map of the entire sky. From these observations, detailed catalogues will be created with the aim of providing a complete census of the local infrared Universe. These catalogues will eventually be released to the global astronomical community. After the helium has expired AKARI will still have the use of its near-infrared cameras in the final phase of the mission that will last for a further year.

Robert Massey | alfa
Further information:
http://www.ras.org.uk/

More articles from Physics and Astronomy:

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

nachricht Quantum thermometer or optical refrigerator?
23.06.2017 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>