Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Akari Maps Warm Universe In Exquisite Detail

11.07.2007
A team of Japanese and European astronomers have mapped the whole sky at infrared wavelengths for the first time in two decades. The new map, produced using the AKARI surveyor is far sharper than its most recent predecessor, completed by the IRAS satellite back in 1984.

Team member Dr Chris Pearson from the Japan Aerospace Exploration Agency (JAXA) and European Space Agency presented the results at this week’s ‘From IRAS to Herschel and Planck’ conference at the Geological Society in London. The meeting is being held to celebrate the 65th birthday of Royal Astronomical Society President Professor Michael Rowan-Robinson.

The AKARI satellite uses a telescope with a 68.5-cm diameter mirror to detect radiation at near-, mid- and far-infrared wavelengths. Many of the cooler objects in the Universe emit infrared radiation that penetrates dust and gas much more readily than visible light, so telescopes like AKARI are able to image objects like forming stars and the centres of galaxies.

AKARI was launched on 21 February 2006 from the Uchinoura Space Center in southern Japan. On current projections, the liquid helium it uses to keep the detectors cold will last until at least 9 September 2007, giving the primary mission a lifetime of about 550 days. Scientists may then extend its life using mechanical coolers to allow observation of sources emitting near-infrared radiation to continue.

The new high-resolution map is assembled from thousands of different images made as the AKARI satellite orbited the Earth gradually scanning the entire sky. One of the released images shows the whole sky as seen by AKARI, with the plane of our Galaxy (the Milky Way) visible as a bright stripe running from left to right. The bright region in the centre of the image is the material surrounding the galactic centre, thought to harbour a giant black hole.

At the lower right of the all-sky image is the Large Magellanic Cloud, a small galaxy that orbits the Milky Way at a distance of about 160,000 light years (or 1.5 million million million km). AKARI images clearly show the regions in this and the other galaxies where stars are forming at a vigorous pace.

Another set of figures shows the region of the sky in the direction of the constellation of Orion, familiar to northern hemisphere observers in the winter months. One image is made with visible light whilst the other image shows the same region depicted using the far-infrared emission detected by AKARI. In both images star-forming regions like the Orion, Rosette and Horsehead nebulae (clouds of gas and dust) are clearly visible. The infrared light from young stars in each nebula heats up their surroundings so much that these regions dominate the AKARI image. At the top right a giant circle of gas is all that remains of a series of explosions that took place when some of the most massive stars ended their lives, sweeping away the surrounding dust and gas.

A fourth image shows the far-infrared view of the constellation of Cygnus, a part of the sky best seen in the northern summer. Bright spots mark other regions of star formation, alongside dark voids cleared by the winds from nearby massive stars. The Milky Way runs from top left to bottom right.

Chris Pearson commented on the new images, “The first comprehensive result from the AKARI mission’s All-Sky Survey is an astoundingly beautiful map of the entire sky. With this image we can see in explicit detail the structure of our own galaxy and the Universe beyond. We are now looking forward to the next images that will show the sky at longer infrared wavelengths.”

Open University scientist and collaborator Dr Stephen Serjeant added, “I'm delighted with this beautiful image of the whole sky. The images of Orion show how strikingly different the sky looks in infrared light. This is our first step towards a comprehensive map of the birth of stars and galaxies in the Universe.”

AKARI will continue to scan the sky at six independent wavelengths until the expiration of the on-board 170 litres of liquid helium, all the while gradually building up a multi-colour map of the entire sky. From these observations, detailed catalogues will be created with the aim of providing a complete census of the local infrared Universe. These catalogues will eventually be released to the global astronomical community. After the helium has expired AKARI will still have the use of its near-infrared cameras in the final phase of the mission that will last for a further year.

Robert Massey | alfa
Further information:
http://www.ras.org.uk/

More articles from Physics and Astronomy:

nachricht Physicists discover that lithium oxide on tokamak walls can improve plasma performance
22.05.2017 | DOE/Princeton Plasma Physics Laboratory

nachricht Experts explain origins of topographic relief on Earth, Mars and Titan
22.05.2017 | City College of New York

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>