Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Akari Maps Warm Universe In Exquisite Detail

11.07.2007
A team of Japanese and European astronomers have mapped the whole sky at infrared wavelengths for the first time in two decades. The new map, produced using the AKARI surveyor is far sharper than its most recent predecessor, completed by the IRAS satellite back in 1984.

Team member Dr Chris Pearson from the Japan Aerospace Exploration Agency (JAXA) and European Space Agency presented the results at this week’s ‘From IRAS to Herschel and Planck’ conference at the Geological Society in London. The meeting is being held to celebrate the 65th birthday of Royal Astronomical Society President Professor Michael Rowan-Robinson.

The AKARI satellite uses a telescope with a 68.5-cm diameter mirror to detect radiation at near-, mid- and far-infrared wavelengths. Many of the cooler objects in the Universe emit infrared radiation that penetrates dust and gas much more readily than visible light, so telescopes like AKARI are able to image objects like forming stars and the centres of galaxies.

AKARI was launched on 21 February 2006 from the Uchinoura Space Center in southern Japan. On current projections, the liquid helium it uses to keep the detectors cold will last until at least 9 September 2007, giving the primary mission a lifetime of about 550 days. Scientists may then extend its life using mechanical coolers to allow observation of sources emitting near-infrared radiation to continue.

The new high-resolution map is assembled from thousands of different images made as the AKARI satellite orbited the Earth gradually scanning the entire sky. One of the released images shows the whole sky as seen by AKARI, with the plane of our Galaxy (the Milky Way) visible as a bright stripe running from left to right. The bright region in the centre of the image is the material surrounding the galactic centre, thought to harbour a giant black hole.

At the lower right of the all-sky image is the Large Magellanic Cloud, a small galaxy that orbits the Milky Way at a distance of about 160,000 light years (or 1.5 million million million km). AKARI images clearly show the regions in this and the other galaxies where stars are forming at a vigorous pace.

Another set of figures shows the region of the sky in the direction of the constellation of Orion, familiar to northern hemisphere observers in the winter months. One image is made with visible light whilst the other image shows the same region depicted using the far-infrared emission detected by AKARI. In both images star-forming regions like the Orion, Rosette and Horsehead nebulae (clouds of gas and dust) are clearly visible. The infrared light from young stars in each nebula heats up their surroundings so much that these regions dominate the AKARI image. At the top right a giant circle of gas is all that remains of a series of explosions that took place when some of the most massive stars ended their lives, sweeping away the surrounding dust and gas.

A fourth image shows the far-infrared view of the constellation of Cygnus, a part of the sky best seen in the northern summer. Bright spots mark other regions of star formation, alongside dark voids cleared by the winds from nearby massive stars. The Milky Way runs from top left to bottom right.

Chris Pearson commented on the new images, “The first comprehensive result from the AKARI mission’s All-Sky Survey is an astoundingly beautiful map of the entire sky. With this image we can see in explicit detail the structure of our own galaxy and the Universe beyond. We are now looking forward to the next images that will show the sky at longer infrared wavelengths.”

Open University scientist and collaborator Dr Stephen Serjeant added, “I'm delighted with this beautiful image of the whole sky. The images of Orion show how strikingly different the sky looks in infrared light. This is our first step towards a comprehensive map of the birth of stars and galaxies in the Universe.”

AKARI will continue to scan the sky at six independent wavelengths until the expiration of the on-board 170 litres of liquid helium, all the while gradually building up a multi-colour map of the entire sky. From these observations, detailed catalogues will be created with the aim of providing a complete census of the local infrared Universe. These catalogues will eventually be released to the global astronomical community. After the helium has expired AKARI will still have the use of its near-infrared cameras in the final phase of the mission that will last for a further year.

Robert Massey | alfa
Further information:
http://www.ras.org.uk/

More articles from Physics and Astronomy:

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

nachricht NASA team finds noxious ice cloud on saturn's moon titan
19.10.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>