Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers find the most distant known galaxies

11.07.2007
Using natural ‘gravitational lenses’, an international team of astronomers claim to have found a hint of a population of the most distant galaxies yet seen - the light we see from them today left more than 13 thousand million years ago, when the Universe was just 500 million years old.

Team leader Professor Richard Ellis, Steele Professor of Astronomy at Caltech, will present images of these faint and distant objects in his talk on Wednesday 11 July at the ‘From IRAS to Herschel and Planck’ conference at the Geological Society in London. The meeting is being held to celebrate the 65th birthday of Royal Astronomical Society President Professor Michael Rowan-Robinson.

When light from very distant bodies passes through the gravitational field of much nearer massive objects, it bends in an effect known as ‘gravitational lensing’. In a pioneering technique, the Caltech-led group used massive clusters of galaxies – the best example of natural gravitational lenses - in a series of campaigns to locate progressively more distant systems that would not be detected in normal surveys. The team found the galaxies using one of the most powerful telescopes in the world, the Keck II, which has a 10 m diameter mirror and is sited on Mauna Kea, Hawaii.

Richard Ellis explains, "Gravitational lensing is the magnification of distant sources by foreground structures. By looking through carefully-selected clusters, we have located 6 star forming galaxies seen at unprecedented distances, corresponding to a time when the Universe was only 500 million years old, or less than 4% of its present age."

When the Universe was 300,000 years old it is thought to have entered a period when no stars were shining. Cosmologists refer to this phase of cosmic history as the `Dark Ages'. Pinpointing the moment of `cosmic dawn' when the first stars and galaxies began to shine and the dark ages ended is a major observational quest and provides the motivation for building future powerful telescopes such as the European Southern Observatory’s Extremely Large Telescope, the US/Canadian Thirty Meter Telescope and the space-borne James Webb Telescope.

The new survey represents 3 years' painstaking observations summarised in the thesis of graduate student, Mr Dan Stark. "Using Keck II, we have detected 6 faint star-forming galaxies whose signal has been boosted about 20 times by the magnifying effect of a foreground cluster. That we should find so many distant galaxies in our small survey area suggests they are very numerous indeed. We estimate the combined radiation output of this population could be sufficient to break apart (ionize) the hydrogen atoms in space at that time, thereby ending the Dark Ages" said Mr Stark.

Proving definitively that each of the 6 objects is unambiguously at these enormous distances (and hence being viewed at such early times) is hard, even with the most powerful facilities. "As with all work at the frontiers, skeptics may wish to see further proof that the objects we are detecting with Keck are really so distant", confessed Ellis. However, in addition to numerous checks the team has made following their initial discovery a year ago, Ellis and Stark point to supporting evidence from galaxies containing old stars that are seen when the Universe was just a bit older.

"We can infer the Universe had a lot of star formation at these early times from Spitzer Space Telescope measurements of larger galaxies seen when the Universe was about 300-500 million years older", explains Mr Stark. "These galaxies show the tell-tale sign of old stars (and were described in earlier work by University of Exeter scientist Dr Andrew Bunker). To produce these old stars requires significant earlier activity, most likely in the fainter star-forming galaxies we have now seen."

Also associated with the programme is Caltech postdoctoral scholar, Dr Johan Richard, who is leading a similar, but independent, survey of magnified galaxies detected with the Hubble and Spitzer Space Telescopes. Although that work is not yet complete, preliminary findings support the conclusions of the Keck II survey. European collaborators include Professor Jean-Paul Kneib of the Laboratory of Astrophysics at Marseilles, and Dr Graham Smith at the University of Birmingham.

Robert Massey | alfa
Further information:
http://www.ras.org.uk
http://www.astro.caltech.edu/~johan/cosmic_dawn/

More articles from Physics and Astronomy:

nachricht NASA mission surfs through waves in space to understand space weather
25.07.2017 | NASA/Goddard Space Flight Center

nachricht A new level of magnetic saturation
25.07.2017 | Georg-August-Universität Göttingen

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>