Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers find the most distant known galaxies

11.07.2007
Using natural ‘gravitational lenses’, an international team of astronomers claim to have found a hint of a population of the most distant galaxies yet seen - the light we see from them today left more than 13 thousand million years ago, when the Universe was just 500 million years old.

Team leader Professor Richard Ellis, Steele Professor of Astronomy at Caltech, will present images of these faint and distant objects in his talk on Wednesday 11 July at the ‘From IRAS to Herschel and Planck’ conference at the Geological Society in London. The meeting is being held to celebrate the 65th birthday of Royal Astronomical Society President Professor Michael Rowan-Robinson.

When light from very distant bodies passes through the gravitational field of much nearer massive objects, it bends in an effect known as ‘gravitational lensing’. In a pioneering technique, the Caltech-led group used massive clusters of galaxies – the best example of natural gravitational lenses - in a series of campaigns to locate progressively more distant systems that would not be detected in normal surveys. The team found the galaxies using one of the most powerful telescopes in the world, the Keck II, which has a 10 m diameter mirror and is sited on Mauna Kea, Hawaii.

Richard Ellis explains, "Gravitational lensing is the magnification of distant sources by foreground structures. By looking through carefully-selected clusters, we have located 6 star forming galaxies seen at unprecedented distances, corresponding to a time when the Universe was only 500 million years old, or less than 4% of its present age."

When the Universe was 300,000 years old it is thought to have entered a period when no stars were shining. Cosmologists refer to this phase of cosmic history as the `Dark Ages'. Pinpointing the moment of `cosmic dawn' when the first stars and galaxies began to shine and the dark ages ended is a major observational quest and provides the motivation for building future powerful telescopes such as the European Southern Observatory’s Extremely Large Telescope, the US/Canadian Thirty Meter Telescope and the space-borne James Webb Telescope.

The new survey represents 3 years' painstaking observations summarised in the thesis of graduate student, Mr Dan Stark. "Using Keck II, we have detected 6 faint star-forming galaxies whose signal has been boosted about 20 times by the magnifying effect of a foreground cluster. That we should find so many distant galaxies in our small survey area suggests they are very numerous indeed. We estimate the combined radiation output of this population could be sufficient to break apart (ionize) the hydrogen atoms in space at that time, thereby ending the Dark Ages" said Mr Stark.

Proving definitively that each of the 6 objects is unambiguously at these enormous distances (and hence being viewed at such early times) is hard, even with the most powerful facilities. "As with all work at the frontiers, skeptics may wish to see further proof that the objects we are detecting with Keck are really so distant", confessed Ellis. However, in addition to numerous checks the team has made following their initial discovery a year ago, Ellis and Stark point to supporting evidence from galaxies containing old stars that are seen when the Universe was just a bit older.

"We can infer the Universe had a lot of star formation at these early times from Spitzer Space Telescope measurements of larger galaxies seen when the Universe was about 300-500 million years older", explains Mr Stark. "These galaxies show the tell-tale sign of old stars (and were described in earlier work by University of Exeter scientist Dr Andrew Bunker). To produce these old stars requires significant earlier activity, most likely in the fainter star-forming galaxies we have now seen."

Also associated with the programme is Caltech postdoctoral scholar, Dr Johan Richard, who is leading a similar, but independent, survey of magnified galaxies detected with the Hubble and Spitzer Space Telescopes. Although that work is not yet complete, preliminary findings support the conclusions of the Keck II survey. European collaborators include Professor Jean-Paul Kneib of the Laboratory of Astrophysics at Marseilles, and Dr Graham Smith at the University of Birmingham.

Robert Massey | alfa
Further information:
http://www.ras.org.uk
http://www.astro.caltech.edu/~johan/cosmic_dawn/

More articles from Physics and Astronomy:

nachricht Electrocatalysis can advance green transition
23.01.2017 | Technical University of Denmark

nachricht Quantum optical sensor for the first time tested in space – with a laser system from Berlin
23.01.2017 | Ferdinand-Braun-Institut Leibniz-Institut für Höchstfrequenztechnik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>