Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The new 'look' of superconductivity

Ames Laboratory Discovery Sheds New Light on 70 Years of Textbook Physics

Like the surface motif of a bubble bath, the spatial distribution of a magnetic field penetrating a superconductor can exhibit an intricate, foam-like structure. Ruslan Prozorov at the U.S. Department of Energy’s Ames Laboratory has observed these mystifying, two-dimensional equilibrium patterns in lead samples when the material is in its superconducting state, below 7.2 Kelvin, or minus 446.71 degrees Fahrenheit.

Through innovative research to relate the complex geometry of the equilibrium patterns to the macroscopic physical properties, such as magnetism, Prozorov has shown that the shape of the entire sample determines the pattern topology and overall magnetic behavior of the system – a significant finding that represents a major contribution to the field of superconductivity. “You can have the same volume and same mass, but if you just change the shape, you get a different type of response from the sample and a different type of geometry of the equilibrium field pattern,” he said. “The discovery has reopened the whole field of equilibrium in type-I superconductors, which had gone dormant because it was considered closed.”

Prozorov’s discovery of the complex patterns in superconducting lead marks a noteworthy departure from the model first proposed by Russian physicist Lev Landau in the 1930s. Landau’s model, which resembles a labyrinth or laminar pattern, has been the unchallenged standard in physics textbooks for 70 years.

But Prozorov questions the Landau model and maintains that it’s impossible to deduce the equilibrium patterns of superconductors from global energy minimization – an established law of physics. “You can assume a certain geometry or pattern and work with it to find an optimal configuration, but that doesn’t guarantee that the pattern you’ve assumed is the one that will turn out as the absolute minimum energy state in nature,” he explained.

Offering an example of the problem he sees with the Landau model, Prozorov said, “If you assume two patterns, you can calculate the total energy for each of them, and the one with the lowest energy may be the equilibrium pattern. Of course, you can’t prove that there isn’t another pattern that has even lower energy. You need to, in point of fact, observe the patterns and relate them to the actual measured physical properties.”

Over the years there have been observations of equilibrium patterns in superconductors that differ from the labyrinth model proposed by Landau. However, the unusual patterns were considered to be defects or fluctuations due to imperfections in the material under study. No one bothered to relate the patterns they were observing to macroscopic properties. No one, that is, until Prozorov.

“It all started with an accidental finding,” he said. I was trying to calibrate a thermometer in my magneto-optical cryostat, so I put in a very clean, stress-free piece of lead. This is an easy way to calibrate because lead becomes superconducting at 7.2 Kelvin, so when I looked at my sample and saw superconductivity, I knew my thermometer was correct.”

But something else wasn’t correct, at least not textbook correct. When Prozorov applied a sufficiently large magnetic field and looked at the lead sample in the magneto-optics system, he was surprised to see not the Landau labyrinth pattern but, rather, a pattern of two-dimensional tube shapes that he describes as looking like soap foam. “I was shocked because this was totally unexpected,” he said. “So now the big question was which pattern represents equilibrium?”

Prozorov’s experiments showed that, depending on its purity and macroscopic physical shape, the sample under investigation displayed either the soap-foam pattern or the Landau laminar pattern. He knew that samples like disks or slabs that have two parallel surfaces also have a property known as a geometric barrier. Only those sample shapes exhibited the Landau pattern, and only when the magnetic field was reduced. However, Prozorov discovered that shapes without two flat surfaces, such as spheres, hemispheres, pyramids and cones, don’t exhibit the Landau behavior. “We observed the foam, or tubular, phase in all of these sample shapes, and we don’t have the Landau phase at all,” he said. “So it’s the foam phase that’s the equilibrium state of the system. Most of the past studies were done on samples with flat surfaces, that’s why people never observed this previously for decreasing magnetic field.”

Emphasizing the difficulty involved in creating these less common sample shapes, Prozorov said, “To observe this soap-foam phenomenon, the samples must be very clean and defect-free with a uniformity of crystal structure. We spent a lot of time trying to make lead samples in the shapes of hemispheres, cones and pyramids and finally succeeded. Having access to the materials expertise available at Ames Laboratory has been a tremendous benefit in our efforts,” he added.

The DOE Office of Science, Basic Energy Sciences Office and the National Science Foundation funded the above work on equilibrium patterns in superconductors.

Ames Laboratory, celebrating its 60th anniversary in 2007, is operated for the Department of Energy by Iowa State University. The Lab conducts research into various areas of national concern, including energy resources, high-speed computer design, environmental cleanup and restoration, and the synthesis and study of new materials.

Saren Johnston | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>