Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The new 'look' of superconductivity

09.07.2007
Ames Laboratory Discovery Sheds New Light on 70 Years of Textbook Physics

Like the surface motif of a bubble bath, the spatial distribution of a magnetic field penetrating a superconductor can exhibit an intricate, foam-like structure. Ruslan Prozorov at the U.S. Department of Energy’s Ames Laboratory has observed these mystifying, two-dimensional equilibrium patterns in lead samples when the material is in its superconducting state, below 7.2 Kelvin, or minus 446.71 degrees Fahrenheit.

Through innovative research to relate the complex geometry of the equilibrium patterns to the macroscopic physical properties, such as magnetism, Prozorov has shown that the shape of the entire sample determines the pattern topology and overall magnetic behavior of the system – a significant finding that represents a major contribution to the field of superconductivity. “You can have the same volume and same mass, but if you just change the shape, you get a different type of response from the sample and a different type of geometry of the equilibrium field pattern,” he said. “The discovery has reopened the whole field of equilibrium in type-I superconductors, which had gone dormant because it was considered closed.”

Prozorov’s discovery of the complex patterns in superconducting lead marks a noteworthy departure from the model first proposed by Russian physicist Lev Landau in the 1930s. Landau’s model, which resembles a labyrinth or laminar pattern, has been the unchallenged standard in physics textbooks for 70 years.

But Prozorov questions the Landau model and maintains that it’s impossible to deduce the equilibrium patterns of superconductors from global energy minimization – an established law of physics. “You can assume a certain geometry or pattern and work with it to find an optimal configuration, but that doesn’t guarantee that the pattern you’ve assumed is the one that will turn out as the absolute minimum energy state in nature,” he explained.

Offering an example of the problem he sees with the Landau model, Prozorov said, “If you assume two patterns, you can calculate the total energy for each of them, and the one with the lowest energy may be the equilibrium pattern. Of course, you can’t prove that there isn’t another pattern that has even lower energy. You need to, in point of fact, observe the patterns and relate them to the actual measured physical properties.”

Over the years there have been observations of equilibrium patterns in superconductors that differ from the labyrinth model proposed by Landau. However, the unusual patterns were considered to be defects or fluctuations due to imperfections in the material under study. No one bothered to relate the patterns they were observing to macroscopic properties. No one, that is, until Prozorov.

“It all started with an accidental finding,” he said. I was trying to calibrate a thermometer in my magneto-optical cryostat, so I put in a very clean, stress-free piece of lead. This is an easy way to calibrate because lead becomes superconducting at 7.2 Kelvin, so when I looked at my sample and saw superconductivity, I knew my thermometer was correct.”

But something else wasn’t correct, at least not textbook correct. When Prozorov applied a sufficiently large magnetic field and looked at the lead sample in the magneto-optics system, he was surprised to see not the Landau labyrinth pattern but, rather, a pattern of two-dimensional tube shapes that he describes as looking like soap foam. “I was shocked because this was totally unexpected,” he said. “So now the big question was which pattern represents equilibrium?”

Prozorov’s experiments showed that, depending on its purity and macroscopic physical shape, the sample under investigation displayed either the soap-foam pattern or the Landau laminar pattern. He knew that samples like disks or slabs that have two parallel surfaces also have a property known as a geometric barrier. Only those sample shapes exhibited the Landau pattern, and only when the magnetic field was reduced. However, Prozorov discovered that shapes without two flat surfaces, such as spheres, hemispheres, pyramids and cones, don’t exhibit the Landau behavior. “We observed the foam, or tubular, phase in all of these sample shapes, and we don’t have the Landau phase at all,” he said. “So it’s the foam phase that’s the equilibrium state of the system. Most of the past studies were done on samples with flat surfaces, that’s why people never observed this previously for decreasing magnetic field.”

Emphasizing the difficulty involved in creating these less common sample shapes, Prozorov said, “To observe this soap-foam phenomenon, the samples must be very clean and defect-free with a uniformity of crystal structure. We spent a lot of time trying to make lead samples in the shapes of hemispheres, cones and pyramids and finally succeeded. Having access to the materials expertise available at Ames Laboratory has been a tremendous benefit in our efforts,” he added.

The DOE Office of Science, Basic Energy Sciences Office and the National Science Foundation funded the above work on equilibrium patterns in superconductors.

Ames Laboratory, celebrating its 60th anniversary in 2007, is operated for the Department of Energy by Iowa State University. The Lab conducts research into various areas of national concern, including energy resources, high-speed computer design, environmental cleanup and restoration, and the synthesis and study of new materials.

Saren Johnston | EurekAlert!
Further information:
http://www.ameslab.gov

More articles from Physics and Astronomy:

nachricht Igniting a solar flare in the corona with lower-atmosphere kindling
29.03.2017 | New Jersey Institute of Technology

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>