Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

GROND Takes Off

09.07.2007
A new instrument has seen First Light at the ESO La Silla Observatory. Equipping the 2.2-m MPI/ESO telescope, GROND takes images simultaneously in seven colours. It will be mostly used to determine distances of gamma-ray bursts.

Taking images in different filters simultaneously is important for the study of many astrophysical sources, and in particular of variable sources, such as close binaries or active galactic nuclei. But it is most crucial in the follow-up of gamma-ray bursts. Gamma-ray bursts (GRBs) are short flashes of energetic gamma-rays lasting from less than a second to several minutes. They release a tremendous quantity of energy in this short time making them the most powerful events since the Big Bang.

Gamma-ray bursts, which are invisible to our eyes, are discovered by telescopes in space. After releasing their intense burst of high-energy radiation, they become detectable for a fleeting moment in the optical and in the near-infrared. This 'afterglow' fades very rapidly, making detailed analysis possible for only a few hours after the gamma-ray detection. This analysis is important in particular in order to determine the GRB's distance and, hence, intrinsic brightness.

A first determination of the distance can be done by taking images through different filters, using the so-called photometric redshift [1]. Because a typical GRB afterglow becomes 15 times fainter after just 10 minutes, and over 200 times fainter after an hour, it is important to observe the object in as many filters as possible simultaneously.

"To make the determination of distance of far-away objects as accurate as possible, we decided to use four different filters in the optical and three different filters in the near-infrared," says Jochen Greiner, who led the development of the GROND instrument. GROND stands for Gamma-Ray burst Optical/Near-Infrared Detector.

GROND takes thus images of the same region of the sky in 7 different filters. The field of view in the near-infrared is 10 times 10 arcminutes, or 1/7th the area of the Full Moon. It is smaller in the visible, slightly above 5 x 5 arcmin.

GROND is presently in its commissioning phase and its first science demonstration has been achieved, showing that all technical systems work properly. In particular, GROND observed a quasar located more than 12 billion light-years away.

As for many instruments specialising in the follow-up of gamma-ray bursts (see e.g. ESO 17/07 and 26/07), GROND can also be activated with a Rapid Response Mode (RRM): GRB alerts will be automatically fed into the system thus minimising the delay between the gamma-ray burst detection by a satellite and its observation by GROND.

"The implementation of the RRM at the 2.2-m telescope is done in exactly the same way as for the VLT, and boosts ESO's leadership to offer observing systems with ultra fast response time towards GRB follow-up," says Michael Sterzik, Head of Science Operations Department at ESO La Silla.

A dedicated data analysis pipeline is also being tested which will provide the distance of the burst a few minutes after the first observations.

"Ultimately, the goal is to trigger ESO's VLT to perform spectroscopy of the source with fine-tuned settings, thereby maximising the scientific return of GRB follow-up observations of the VLT," says Greiner.

GROND has been built by the Max-Planck Institute for Extraterrestrial Physics in collaboration with the Thüringer Landessternwarte Tautenburg.

Note
[1] The photometric redshift method makes it possible to judge the distance to a remote celestial object (a galaxy, a quasar, a gamma-ray burst afterglow) from its measured colours. It is based on the proportionality between the distance and the velocity along the line of sight (Hubble's law) that reflects the expansion of the Universe. The larger the distance of an object is, the larger is its velocity and, due to the Doppler effect, the spectral shift of its emission towards longer (redder) wavelengths. Thus, the measured colour provides a rough indication of the distance.

Henri Boffin | alfa
Further information:
http://www.eso.org/public/outreach/press-rel/pr-2007/pr-30-07.html

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>