Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astronomers look forward to Herschel's views of the distant universe

09.07.2007
Detailed plans are now in place for scientific work with the Herschel Space Observatory, set for launch by the European Space Agency (ESA) in 2008.

Professor Matt Griffin of the School of Physics and Astronomy at Cardiff University will describe the prospects for observations of distant galaxies in his talk on Monday 9 July at the ‘From IRAS to Herschel and Planck’ conference at the Geological Society in London. The meeting is being held to celebrate the 65th birthday of Royal Astronomical Society President Professor Michael Rowan-Robinson, who has been a leading figure in infrared astronomy for the last three decades.

Herschel is named after the British astronomer William Herschel, who made the first detection infrared radiation in 1800, some 19 years after he discovered the planet Uranus. It will be the largest astronomical telescope yet flown in space, with a diameter of 3.5 metres, and will carry three sophisticated scientific instruments - SPIRE (the Spectral and Photometric Imaging Receiver), HIFI (the Heterodyne Instrument for the Far Infrared) and PACS (Photodetector Array Camera and Spectrometer). These are designed to view the Universe in the far infrared and sub-millimetre wavelength bands that cannot be seen from the ground because this radiation cannot penetrate the Earth's atmosphere to reach the ground.

Large galaxies like our own are thought to have formed in the past by the merging of smaller galaxies. These mergers usually caused intense episodes of star formation in the new galaxy, the signs of which can best be observed in the far infrared part of the spectrum. This is because star formation occurs deep inside clouds of gas and dust from which no visible light can emerge - but far infrared light can get out, carrying with it the signatures of what's going on inside. When astronomers observe very distant objects, they see them as they were a long time ago, so by observing galaxies at very large distances, Herschel will show us how they formed as a result of these cosmic collisions.

Closer to home, Herschel's instruments will be used to study in great detail how stars and planetary systems continue to form in our own galaxy today, and to investigate the planets, comets and satellites of our own Solar System.

Robert Massey | alfa
Further information:
http://www.ras.org.uk

More articles from Physics and Astronomy:

nachricht Magnetic nano-imaging on a table top
20.04.2018 | Georg-August-Universität Göttingen

nachricht New record on squeezing light to one atom: Atomic Lego guides light below one nanometer
20.04.2018 | ICFO-The Institute of Photonic Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>