Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Astronomers look forward to Herschel's views of the distant universe

Detailed plans are now in place for scientific work with the Herschel Space Observatory, set for launch by the European Space Agency (ESA) in 2008.

Professor Matt Griffin of the School of Physics and Astronomy at Cardiff University will describe the prospects for observations of distant galaxies in his talk on Monday 9 July at the ‘From IRAS to Herschel and Planck’ conference at the Geological Society in London. The meeting is being held to celebrate the 65th birthday of Royal Astronomical Society President Professor Michael Rowan-Robinson, who has been a leading figure in infrared astronomy for the last three decades.

Herschel is named after the British astronomer William Herschel, who made the first detection infrared radiation in 1800, some 19 years after he discovered the planet Uranus. It will be the largest astronomical telescope yet flown in space, with a diameter of 3.5 metres, and will carry three sophisticated scientific instruments - SPIRE (the Spectral and Photometric Imaging Receiver), HIFI (the Heterodyne Instrument for the Far Infrared) and PACS (Photodetector Array Camera and Spectrometer). These are designed to view the Universe in the far infrared and sub-millimetre wavelength bands that cannot be seen from the ground because this radiation cannot penetrate the Earth's atmosphere to reach the ground.

Large galaxies like our own are thought to have formed in the past by the merging of smaller galaxies. These mergers usually caused intense episodes of star formation in the new galaxy, the signs of which can best be observed in the far infrared part of the spectrum. This is because star formation occurs deep inside clouds of gas and dust from which no visible light can emerge - but far infrared light can get out, carrying with it the signatures of what's going on inside. When astronomers observe very distant objects, they see them as they were a long time ago, so by observing galaxies at very large distances, Herschel will show us how they formed as a result of these cosmic collisions.

Closer to home, Herschel's instruments will be used to study in great detail how stars and planetary systems continue to form in our own galaxy today, and to investigate the planets, comets and satellites of our own Solar System.

Robert Massey | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>