Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ESF helps Europe play lead role in new age of astronomical discovery

04.07.2007
Astronomy is entering a new golden age of discovery led by breakthroughs in telescopes and instruments making them capable of observing distant events early in the life of the universe. There is now great optimism that one of the fundamental questions of cosmology, the origin of galaxies, will be resolved within the next decade or sooner. But the technology involved is expensive, for instruments have to be highly sensitive and some of the observation needs to take place from space beyond the interference of the earth’s atmosphere, so an international effort is involved.

Europe is playing a key role in this global programme with three new instruments, including the €1 billion Herchel Space Observatory (HSO), and the European Science Foundation (ESF) has been helping to coordinate the effort by bringing many of the principle users of these facilities together at an international conference. Delegates included leading specialists in all aspects of galaxy and star formation.

Galaxies are formed when areas of dust and gas collapse under gravity, forming clumps within which densities become sufficient to trigger the nuclear fusion required for star formation. But the devil is in the detail, and this has been obscured from optical telescopes by clouds of dust that absorb visible light. However the dust re-emits this visible light absorbed from galaxies at longer wavelengths, and the latest telescopes are now able to detect this at sufficient sensitivity to unravel the processes being observed, as Eelco van Kampen, chair of the ESF Research Conference The Origin of Galaxies: Exploring Galaxy Evolution with the New Generation of Infrared-Millimeter Facilities, pointed out. “The main reason for a new golden age is the sheer number of new instruments that will become available over the next few years, literally opening up the universe in the far-infrared to millimeter wavelengths,” said van Kampen.

It is not just that galaxy formation can now be observed indirectly via the radiation emitted from the dust that obscures a direct view, but the new telescopes are also able to span a much broader spectrum of wavelengths. This is crucial for understanding what is happening, because many processes, and also individual chemical elements, only reveal themselves via the radiation they emit across multiple wavelengths, rather than their intensity at a particular point of the spectrum, or single “colour”. “The main gain is that the whole 'spectral energy distribution' (SED for short) can be mapped for each source, which means that one does not only measure total luminosity, but also 'colours' and emission from specific molecules,” said van Kampen. “From the SED one can derive many properties of the sources, including temperatures and composition.”

Although there is great confidence that dramatic progress will be made, there is uncertainty over the exact nature of the discoveries to come, creating eager anticipation among astronomers. “There will be many surprises, as this is still a relatively uncharted wavelength range,” said van Kampen. “It is hard to predict whether surprises will be on the same scale as those in gamma-rays, where many short-lived bursts appeared quite unexpectedly, but there is great potential for the unexpected!” Gamma ray bursts lasting a split second are caused by the most powerful explosions known, and provided evidence of black holes – objects whose gravity is so intense that even light does not travel fast enough to escape.

For European researchers, there is an additional aspect to the challenge – all the observations from the crucial HSO telescope have to be made within about three years before the equipment runs out of its vital helium cooling fluid, which cannot practically be replenished. The telescope has to be kept cool to avoid emitting infra red radiation from its own fabric, which would swamp the faint signals from distant dust clouds. “The Herschel Space Telescope has to be cooled significantly to reduce background noise, and for this purpose will be housed in a superfluid helium cryostat,” said van Kampen. “The need for cooling means that the telescope lifetime is limited by its helium supply. We are promised at least 3 years of routine operations, but this could be somewhat longer if we are lucky.”

Apart from the HSO, Europe is contributing to two other instruments to the international galaxy observing effort: SCUBA-2, which is a wide field camera for the James Clerk Maxwell Telescope (JCMT) on Mauna Kea, Hawaii, and the Atacama Large Millimetre Array (ALMA) 16400 feet up in the Chilean Andes.

The conference, which was one of the series of research conferences organised by the ESF Research Conferences Scheme, was held at Universitätszentrum Obergurgl near Innsbruck in Austria, from 24-29 March 2007. This event was organised by the ESF in partnership with the Fonds zur Förderung der wissenschaftlichen Forschung in Österreich (FWF) and the Leopold-Franzens-Universität Innsbruck (LFUI).

The European Science Foundation is based in Strasbourg, France, see www.esf.org The ESF is an association of 75 member organisations from 30 European countries. Since its inception in 1974, it has co-ordinated a wide range of pan-European scientific initiatives.

More information: www.esf.org/activities/esf-conferences/details/confdetail224.html?conf=224

Thomas Lau | alfa
Further information:
http://www.esf.org/activities/esf-conferences/details/confdetail224.html?conf=224

More articles from Physics and Astronomy:

nachricht Breakthrough with a chain of gold atoms
17.02.2017 | Universität Konstanz

nachricht New functional principle to generate the „third harmonic“
16.02.2017 | Laser Zentrum Hannover e.V.

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>