Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Height ices Mars on top

21.03.2002


Martian atmosphere churns harder in south making north wetter.


Mars: height variations lead to a wet north pole.
© NASA/JPL


The changing face of the northern polar ice cap.
© NASA/JPL



Scientists have figured out why it’s wet up north - on Mars. A new computer simulation of the martian atmosphere suggests that the planet’s geography causes differences in atmospheric circulation within the northern and southern hemispheres. These differences dump more water on the martian north pole, where it adds to the seasonal ice-cap.

Mark Richardson of the California Institute of Technology in Pasadena and John Wilson of the Geophysical Fluid Dynamics Laboratory in Princeton, New Jersey, find that the thin martian air, which is mostly carbon dioxide, rises and falls more vigorously in the southern than in the northern hemisphere1.


This difference all but disappears when the duo remove from their simulations the height variations of the martian plains. Mars’ south pole is about six kilometres higher than its north pole. By comparison, Earth’s Tibetan plateau is on average just four kilometres above sea level.

It is this height difference that makes the atmospheric circulation dissimilar in the two hemispheres, the researchers conclude. The discrepancy creates an overall south-to-north transport of water vapour as the water ice in the polar ice-caps melts during their respective summers.

Richardson and Wilson reckon that the other potential cause of the asymmetry in atmospheric circulation - the eccentricity of Mars’ orbit around the Sun -doesn’t have a major role. The shape of the orbit determines how close Mars is to the Sun around the time of the southern summer solstice. But changing this distance in the simulations doesn’t alter the asymmetry of the circulation pattern.

Hadley cells

Atmospheric circulation on Mars happens much as it does on Earth. Gases warmed at the equator rise by convection, before passing towards the poles, where they cool, sink and flow back to the equator. This creates two great lobes of circulating gas, called Hadley cells, one in each hemisphere.

The Hadley cells carry water vapour and dust picked up from the planet’s surface. Richardson and Wilson’s simulations show that Mars’ southern Hadley cell spins more vigorously. Leaking across the equator, dust and water are then borne northwards.

The Mars Global Surveyor spacecraft showed very clearly in the late 1990s that the north and south polar ice-caps are not the same. The seasonal northern ice is rough and pitted, and looks much the same all over. The southern ice, on the other hand, is sculpted by natural erosion into strange shapes, more like a permanent ice sheet.

Some of these differences may be caused by the asymmetry in circulation - although it is not yet clear how much of either ice-cap is water ice. Most of it is frozen carbon dioxide: dry ice. The Mars Odyssey spacecraft began sending data back to Earth last month, and this information is beginning to clarify how water ice is distributed over Mars.

One clear prediction of the new results concerns the formation of polar ice features called layered deposits, which are thought to consist of alternating layers of dust and ice. They have been seen at both poles, but Richardson and Wilson calculate that their growth is likely to be more rapid in the north. We haven’t watched Mars close up for long enough yet to know if this is true.

References
  1. Richardson, M. I. Wilson, R. J. A topographically forced asymmetry in the martian circulation and climate. Nature, 416, 298 - 301, (2002).


PHILIP BALL | © Nature News Service

More articles from Physics and Astronomy:

nachricht Two dimensional circuit with magnetic quasi-particles
22.01.2018 | Technische Universität Kaiserslautern

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>