Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Height ices Mars on top

21.03.2002


Martian atmosphere churns harder in south making north wetter.


Mars: height variations lead to a wet north pole.
© NASA/JPL


The changing face of the northern polar ice cap.
© NASA/JPL



Scientists have figured out why it’s wet up north - on Mars. A new computer simulation of the martian atmosphere suggests that the planet’s geography causes differences in atmospheric circulation within the northern and southern hemispheres. These differences dump more water on the martian north pole, where it adds to the seasonal ice-cap.

Mark Richardson of the California Institute of Technology in Pasadena and John Wilson of the Geophysical Fluid Dynamics Laboratory in Princeton, New Jersey, find that the thin martian air, which is mostly carbon dioxide, rises and falls more vigorously in the southern than in the northern hemisphere1.


This difference all but disappears when the duo remove from their simulations the height variations of the martian plains. Mars’ south pole is about six kilometres higher than its north pole. By comparison, Earth’s Tibetan plateau is on average just four kilometres above sea level.

It is this height difference that makes the atmospheric circulation dissimilar in the two hemispheres, the researchers conclude. The discrepancy creates an overall south-to-north transport of water vapour as the water ice in the polar ice-caps melts during their respective summers.

Richardson and Wilson reckon that the other potential cause of the asymmetry in atmospheric circulation - the eccentricity of Mars’ orbit around the Sun -doesn’t have a major role. The shape of the orbit determines how close Mars is to the Sun around the time of the southern summer solstice. But changing this distance in the simulations doesn’t alter the asymmetry of the circulation pattern.

Hadley cells

Atmospheric circulation on Mars happens much as it does on Earth. Gases warmed at the equator rise by convection, before passing towards the poles, where they cool, sink and flow back to the equator. This creates two great lobes of circulating gas, called Hadley cells, one in each hemisphere.

The Hadley cells carry water vapour and dust picked up from the planet’s surface. Richardson and Wilson’s simulations show that Mars’ southern Hadley cell spins more vigorously. Leaking across the equator, dust and water are then borne northwards.

The Mars Global Surveyor spacecraft showed very clearly in the late 1990s that the north and south polar ice-caps are not the same. The seasonal northern ice is rough and pitted, and looks much the same all over. The southern ice, on the other hand, is sculpted by natural erosion into strange shapes, more like a permanent ice sheet.

Some of these differences may be caused by the asymmetry in circulation - although it is not yet clear how much of either ice-cap is water ice. Most of it is frozen carbon dioxide: dry ice. The Mars Odyssey spacecraft began sending data back to Earth last month, and this information is beginning to clarify how water ice is distributed over Mars.

One clear prediction of the new results concerns the formation of polar ice features called layered deposits, which are thought to consist of alternating layers of dust and ice. They have been seen at both poles, but Richardson and Wilson calculate that their growth is likely to be more rapid in the north. We haven’t watched Mars close up for long enough yet to know if this is true.

References
  1. Richardson, M. I. Wilson, R. J. A topographically forced asymmetry in the martian circulation and climate. Nature, 416, 298 - 301, (2002).


PHILIP BALL | © Nature News Service

More articles from Physics and Astronomy:

nachricht Quantum optics allows us to abandon expensive lasers in spectroscopy
22.11.2017 | Lomonosov Moscow State University

nachricht Nano-watch has steady hands
22.11.2017 | University of Vienna

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>