Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new technique for building nanodevices in the lab

26.06.2007
Electron beam 'carves' the world's smallest devices

Physicists at the University of Pennsylvania are using a new technique to craft some of the tiniest metal nanostructures ever created, none larger than 10 nanometers, or 10,000 times smaller than the width of a single human hair.

The technique employs transmission electron beam ablation lithography, or TEBAL, to “carve” nanostructures from thin sheets of gold, silver, aluminum and other metals. TEBAL provides a more dependable method for producing quality versions of these microscopic devices, which are studied for their novel mechanical properties and their potential use in next-generation sensors and electronics. The method also permits simultaneous, real-time atomic imaging of the devices as they are made.

Traditional techniques for building nanodevices employ electron beam lithography but also require the use of polymers and chemicals in which the metal is evaporated. Typical results are closer to 50 nanometers in size and rarely as small as 10.

Marija Drndiæ, professor of physics at Penn, and her team created nanodisks, nanorings, nanowires, nanoholes and multi-terminal nano-transistors. The results were published in the journal Nano Letters.

“Many different approaches have been undertaken to fabricate the small structures needed to probe the phenomena that take place at the nanoscale, but the most widely used and versatile techniques are limited to tens of nanometers,” Drndiæ said. “Reliably and consistently fabricating devices at the sub-10-nanometer scale from the top down is generally still challenging, but our technique offers a route to this regime.”

Furthermore, the TEBAL method creates a resistance-free connection between the nanostructure and an electrical lead that might provide power to the device. The more parts involved, the greater the chance of a drop in electrical conduction between parts. Plus, structures made from bottom-up techniques, i.e., assembled from smaller components, typically first need to be placed on a chip and then connected to larger circuitry. Working with a single piece of metal means there are no additional parts to reduce efficiency.

The team used the superior control of the electron beam to reproduce multiple, identical copies of each structure. The ability to rapidly produce these tiny devices will provide the samples needed for a better understanding of the mechanical and conductive properties of metal at the molecular scale. Future research may lead to computer-based creation of such devices with more intricacy and faster production cycles.

Superconducting circuits, magnets and molecule-sized transistors are among the real-world applications that may result from this research. Penn physicists also propose that a more rapid method of DNA sequencing can be developed from this process, by threading DNA strands through an electronic “nanoport” that could read the base pairs that constitute a species’ genetic code.

Jordan Reese | EurekAlert!
Further information:
http://www.upenn.edu

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

Species may appear deceptively resilient to climate change

24.11.2017 | Ecology, The Environment and Conservation

Lightning, with a chance of antimatter

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>