Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CERN announces new start-up schedule for world’s most powerful particle accelerator

26.06.2007
Speaking at the 142nd session of the CERN1 Council today, the Organization’s Director General Robert Aymar announced that the Large Hadron Collider (LHC) will start up in May 2008, taking the first steps towards studying physics at a new high-energy frontier. A low-energy run originally scheduled for this year has been dropped as the result of a number of minor delays accumulated over the final months of LHC installation and commissioning, coupled with the failure in March of a pressure test in one of the machine’s components.

The LHC is a scientific instrument of unprecedented complexity, and at 27 kilometres in circumference, the world’s largest superconducting installation. Cooling the first sector of the machine to a temperature of 1.9 K (-271.3°C), colder than outer space, began earlier this year and has provided an important learning process. The first sector cool down has taken longer than scheduled, but has allowed the LHC’s operations team to iron out teething troubles and gain experience that will be applied to the machine’s seven remaining sectors. Now cold, tests on powering up the sector have begun and the cool down of a second sector will soon be underway.


Interconnections on the last sector of the LHC

In March, a magnet assembly known as the inner triplet, provided to CERN as part of the contribution of the US to the LHC project, failed a pressure test. A repair has been identified and is currently being implemented.

“The low-energy run at the end of this year was extremely tight due to a number of small delays, but the inner triplet problem now makes it impossible,” said LHC Project Leader Lyn Evans. “We’ll be starting up for physics in May 2008, as always foreseen, and will commission the machine to full energy in one go.”

The new schedule foresees successively cooling and powering each of the LHC’s sectors in turn this year. Throughout the winter, hardware commissioning will continue, allowing the LHC to be ready for high-energy running by the time CERN’s accelerators are switched on in the spring. Commissioning a new particle accelerator is a complex task. Beams will be injected at low energy and low intensity to give the operations team experience in driving the new machine. Intensity and energy will then slowly be increased.

“There’s no big red button when you’re starting up a new accelerator,” said Evans, “but we aim to be seeing high energy collisions by the summer.”

Installation of the large and equally innovative apparatus for experiments at this new and unique facility will continue at the same time. This huge effort will be completed on a schedule consistent with that of the accelerator.

In another important development, the CERN Council agreed to increase CERN’s funding over the years 2008-2011 as an important first step towards implementing the decisions Council made in July 2006 for a European strategy for particle physics.

“This is an important vote for the future of particle physics in Europe,” said CERN Director General Robert Aymar, “it allows us to consolidate the laboratory’s infrastructure, prepare for future upgrades of the LHC and to re-launch a programme of R&D for the long-term future.”

The LHC relies on a chain of particle accelerators, the oldest of which was constructed in the 1950s. Their successful operation is essential to the smooth running of the LHC. These additional resources will be used to consolidate CERN’s infrastructure, and build on it for the future.

1 CERN, the European Organization for Nuclear Research, is the world's leading laboratory for particle physics. It has its headquarters in Geneva. At present, its Member States are Austria, Belgium, Bulgaria, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Italy, Netherlands, Norway, Poland, Portugal, Slovakia, Spain, Sweden, Switzerland and the United Kingdom. India, Israel, Japan, the Russian Federation, the United States of America, Turkey, the European Commission and UNESCO have Observer status

CERN press office | EurekAlert!
Further information:
http://www.cern.ch

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>