Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Seventh Conversation About Reduction Of Spaceship Services Cost

26.06.2007
First, it was the time of giants. The Soviet and American engineers competed in the space race without counting the expenses. Who will be the first to place the spaceshit into the circumtellurian orbit? Who will be the first to launch a human being into outer space? Who will be the first to fly to the Moon?

Who will be first to step on the Mars? Resolution of these matters of principle was the task of big politics, therefore, nobody counted the resources. After politics abandoned space exploration, different time started – the time of dwarfs as it was figuratively called in the report by Grigory Cherniavsky, Corresponding Member of the Russian Academy of Sciences (Academician Reshetnev Scientific Production Association of Applied Mechanics, Krasnoyarsk).

On the one hand, it is impossible now to recklessly spend resources on satisfaction of one’s own curiosity at the expense of the state. On the other hand, space exploration and space instrument-making became an important sector of the national economy: space vehicles enable to commercially organize communications, telecasting and broadcasting, and the Internet for back lands, to provide weather forecasts, allow to look after the harvest, to tack fishing-boats, forest fires and perform a lot of other useful activities.

There arises a natural question if it is possible to reduce the cost of launching new vehicles and space exploration in general? “For the first time, the question was distinctly phrased at one of the conferences on micro-satellites that took place in Hamburg in 1994. It was there, in one of the harbour coffee houses, that a small group of researchers gathered after the meeting, and the idea was born in the course of the discussion that significant saving can be achieved if the ground-based facilities of the space industry is optimized. That is why they came up with an idea to carry out a conference on the subject, - recollects one of the participants to the meeting Richard Holdaway from the Rutherford Appleton Laboratory in Oxford. – Next year we announced the conference that was to take place in my laboratory. We did not have the slightest idea about how many persons, if any, would respond to our proposal. To our surprise, the number of reports came up to about a hundred. Since then, the conference has been held every two years in different cities.”

This year, the organizer of the conference – European Space Agency – chose Moscow, the Institute of Space Exploration of the Russian Academy of Sciences as a token of respect for the jubilee – the fiftieth anniversary of launching the first artificial satellite. “Now, more than a half of each space expedition cost falls on its ground-based servicing, says Ravil Nazirov, Deputy Director of the Institute of Space Exploration (Russian Academy of Sciences). There exist huge tracking headquarters and tracker stations, where a lot of people are employed, including specialists and various administrative service staff. In the short-term, these tracking headquarters will not exist any longer. Satellite control and obtaining data by end-users will be performed via the Internet owing to new IT. I remember very well how ten years ago we thought out all kinds of intricate ways to make the PC calculate the megabytes of data coming from the satellite. And recently, we have downloaded a terabyte of data within half an hour only. This example demonstrates that computer engineering evolution rate allows to hope for the most adventurous dreams to come true.”

While reducing the satellite cost, we do not reinvent the wheel but utilize the wold-wide experience. There are several main trends for that. Firstly, the decresae of satellite weight and utilization of specialized micro- and nonosatellites. Not long ago, it was necessary to develop a single satellite per each task, which require significant expenses. Now there are several options of various platforms available, and the user can choose the needed one depending on the task. Thus, the second principle appears – satellite unification and reuse of previous developments. The advantage of the second principle was vividly shown during the preparation of three recent expeditions by the European Space Agency – “Mars-Express”, “Venus-Express” and “Rosetta” that is flying to Churyumov-Gerasimenko comet. A lot of blocks of these spaceships are similar, and the “Venus-Express” is equipped with backups of the devices, which proved excellent during the Martian expedition. According to the estimates of Gaele Winters, the European Space Agency Director for macrostructure and operations, due to that it was possible to reduce expenses on development of such space vehicles by 85 percent and on their maintenance during the flight – by 50 percent. Unfortunately, it is impossible to reduce the size of many satellites, for example, space telescopes where huge antennas are installed. Design unification and control automation are the main trends for reducing cost of these space vehicles.

The third principle is automation of spaceship tracking process. Probably, in the future the researchers will be able to reject tracking near-earth spaceships’ orbit parameters control from the Earth: they can be connected to global navigation system satellites to ensure automatic orbit support. If antennas are installed on navigation satellites and turned not only towards the Earth but also towards outer space, then it will be possible to also control the satellites that are located higher than navigation satellites are.

Nadezda Markina | alfa
Further information:
http://www.informnauka.ru

More articles from Physics and Astronomy:

nachricht Meteoritic stardust unlocks timing of supernova dust formation
19.01.2018 | Carnegie Institution for Science

nachricht Artificial agent designs quantum experiments
19.01.2018 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>