Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Giant magnetocaloric materials could have large impact on the environment

20.06.2007
Materials that change temperature in magnetic fields could lead to new refrigeration technologies that reduce the use of greenhouse gases, thanks to new research at the U.S. Department of Energy's Argonne National Laboratory and Ames National Laboratory.

Scientists carrying out X-ray experimentation at the Advanced Photon Source at Argonne — the nation's most powerful source of X-rays for research — are learning new information about magnetocaloric materials that have potential for environmentally friendly magnetic refrigeration systems.

Magnetic refrigeration is a clean technology that uses magnetic fields to manipulate the degree of ordering (or entropy) of electronic or nuclear magnetic dipoles in order to reduce a material's temperature and allow the material to serve as a refrigerant. New materials for refrigeration based on gadolinium-germanium-silicon alloys display a giant magnetocaloric effect due to unusual coupling between the material's magnetism and chemical structure.

Understanding this coupling is essential to moving this technology from the laboratory to the household. Magnetic refrigeration does not rely on hydrofluorocarbons (HFCs) used in conventional refrigeration systems. HFCs are greenhouse gases that contribute to global climate change when they escape into the atmosphere.

A collaboration between researchers from Argonne and Ames has now revealed key atomic-level information about these new materials that makes clear the role played by the nominally non-magnetic germanium-silicon ions in the giant magnetocaloric effect. In an article published in the June 15 issue of Physical Review Letters, the researchers describe how they used high-brilliance, circularly-polarized X-ray beams at the Advanced Photon Source to probe the magnetism of gadolinium and germanium ions as the material underwent its bond-breaking magneto-structural transition. In addition to the expected strong magnetization of gadolinium ions, the researchers found significant magnetization attached to the germanium ions.

“This is surprising and important,” said Argonne physicist Daniel Haskel, who led the research team. “Germanium was expected to be non-magnetic. Its magnetization is induced by the hybridization, or mixing, of otherwise non-magnetic germanium atomic orbitals with the magnetic gadolinium orbitals. This hybridization dramatically changes at the germanium-silicon bond-breaking transition, causing the destruction of magnetic ordering and leading to the giant magnetocaloric effect of these materials.”

By combining the novel experimental results with detailed numerical calculations of the electronic structure carried out at Ames Laboratory, the researchers were able to conclude that the magnetized germanium orbitals act as “magnetic bridges” in mediating the magnetic interactions across the distant gadolinium ions.

The magnetocaloric effect – a change in temperature accompanying a change in a material's magnetization – is largest near a material's intrinsic magnetic ordering temperature. In the case of rare-earth gadolinium, this ordering occurs near room temperature and results in a temperature increase of 3-4 K/per Tesla when a magnetic field is applied, making gadolinium the current material of choice for magnetic refrigeration near room temperature.

The prospects for a viable magnetic refrigeration technology recently became brighter with the report of a giant magnetocaloric effect in gadolinium-silicon-germanium alloys. The addition of non-magnetic silicon and germanium ions brings about a giant entropy change when germanium-silicon chemical bonds connecting the magnetism-carrying gadolinium ions are quickly formed or broken, respectively, by the application or removal of a magnetic field. As an added bonus, the magnetic ordering temperature can be tuned by changing the ratio or germanium to silicon.

"As a result of this work we now have a better understanding of the role of nonmagnetic elements, such as germanium, in enhancing magnetic interactions between the rare-earth metals in these materials,” said co-author and Ames Laboratory senior scientist Vitalij Pecharsky. “This discovery is counterintuitive, yet it opens up a range of exciting new opportunities towards the engineering of novel magnetic materials with predictable properties."

Other authors in the paper are Y. Lee, B. Harmon, Y. Mudryk, and K. Gschneidner of Ames and Z. Islam, J. Lang, and G. Srajer at Argonne.

Ames Laboratory, celebrating its 60th anniversary in 2007, is operated for the Department of Energy by Iowa State University. The Lab conducts research into various areas of national concern, including energy resources, the synthesis and study of new materials, high-speed computer design, and environmental cleanup and restoration.

With employees from more than 60 nations, Argonne National Laboratory brings the world's brightest scientists and engineers together to find exciting and creative new solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America 's scientific leadership and prepare the nation for a better future. Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

For more information, please contact Sylvia Carson (630/252-5510 or scarson@anl.gov) at Argonne.

Sylvia Carson | EurekAlert!
Further information:
http://www.anl.gov

More articles from Physics and Astronomy:

nachricht NASA's Fermi catches gamma-ray flashes from tropical storms
25.04.2017 | NASA/Goddard Space Flight Center

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>