Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Giant magnetocaloric materials could have large impact on the environment

20.06.2007
Materials that change temperature in magnetic fields could lead to new refrigeration technologies that reduce the use of greenhouse gases, thanks to new research at the U.S. Department of Energy's Argonne National Laboratory and Ames National Laboratory.

Scientists carrying out X-ray experimentation at the Advanced Photon Source at Argonne — the nation's most powerful source of X-rays for research — are learning new information about magnetocaloric materials that have potential for environmentally friendly magnetic refrigeration systems.

Magnetic refrigeration is a clean technology that uses magnetic fields to manipulate the degree of ordering (or entropy) of electronic or nuclear magnetic dipoles in order to reduce a material's temperature and allow the material to serve as a refrigerant. New materials for refrigeration based on gadolinium-germanium-silicon alloys display a giant magnetocaloric effect due to unusual coupling between the material's magnetism and chemical structure.

Understanding this coupling is essential to moving this technology from the laboratory to the household. Magnetic refrigeration does not rely on hydrofluorocarbons (HFCs) used in conventional refrigeration systems. HFCs are greenhouse gases that contribute to global climate change when they escape into the atmosphere.

A collaboration between researchers from Argonne and Ames has now revealed key atomic-level information about these new materials that makes clear the role played by the nominally non-magnetic germanium-silicon ions in the giant magnetocaloric effect. In an article published in the June 15 issue of Physical Review Letters, the researchers describe how they used high-brilliance, circularly-polarized X-ray beams at the Advanced Photon Source to probe the magnetism of gadolinium and germanium ions as the material underwent its bond-breaking magneto-structural transition. In addition to the expected strong magnetization of gadolinium ions, the researchers found significant magnetization attached to the germanium ions.

“This is surprising and important,” said Argonne physicist Daniel Haskel, who led the research team. “Germanium was expected to be non-magnetic. Its magnetization is induced by the hybridization, or mixing, of otherwise non-magnetic germanium atomic orbitals with the magnetic gadolinium orbitals. This hybridization dramatically changes at the germanium-silicon bond-breaking transition, causing the destruction of magnetic ordering and leading to the giant magnetocaloric effect of these materials.”

By combining the novel experimental results with detailed numerical calculations of the electronic structure carried out at Ames Laboratory, the researchers were able to conclude that the magnetized germanium orbitals act as “magnetic bridges” in mediating the magnetic interactions across the distant gadolinium ions.

The magnetocaloric effect – a change in temperature accompanying a change in a material's magnetization – is largest near a material's intrinsic magnetic ordering temperature. In the case of rare-earth gadolinium, this ordering occurs near room temperature and results in a temperature increase of 3-4 K/per Tesla when a magnetic field is applied, making gadolinium the current material of choice for magnetic refrigeration near room temperature.

The prospects for a viable magnetic refrigeration technology recently became brighter with the report of a giant magnetocaloric effect in gadolinium-silicon-germanium alloys. The addition of non-magnetic silicon and germanium ions brings about a giant entropy change when germanium-silicon chemical bonds connecting the magnetism-carrying gadolinium ions are quickly formed or broken, respectively, by the application or removal of a magnetic field. As an added bonus, the magnetic ordering temperature can be tuned by changing the ratio or germanium to silicon.

"As a result of this work we now have a better understanding of the role of nonmagnetic elements, such as germanium, in enhancing magnetic interactions between the rare-earth metals in these materials,” said co-author and Ames Laboratory senior scientist Vitalij Pecharsky. “This discovery is counterintuitive, yet it opens up a range of exciting new opportunities towards the engineering of novel magnetic materials with predictable properties."

Other authors in the paper are Y. Lee, B. Harmon, Y. Mudryk, and K. Gschneidner of Ames and Z. Islam, J. Lang, and G. Srajer at Argonne.

Ames Laboratory, celebrating its 60th anniversary in 2007, is operated for the Department of Energy by Iowa State University. The Lab conducts research into various areas of national concern, including energy resources, the synthesis and study of new materials, high-speed computer design, and environmental cleanup and restoration.

With employees from more than 60 nations, Argonne National Laboratory brings the world's brightest scientists and engineers together to find exciting and creative new solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America 's scientific leadership and prepare the nation for a better future. Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

For more information, please contact Sylvia Carson (630/252-5510 or scarson@anl.gov) at Argonne.

Sylvia Carson | EurekAlert!
Further information:
http://www.anl.gov

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>