Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Giant magnetocaloric materials could have large impact on the environment

20.06.2007
Materials that change temperature in magnetic fields could lead to new refrigeration technologies that reduce the use of greenhouse gases, thanks to new research at the U.S. Department of Energy's Argonne National Laboratory and Ames National Laboratory.

Scientists carrying out X-ray experimentation at the Advanced Photon Source at Argonne — the nation's most powerful source of X-rays for research — are learning new information about magnetocaloric materials that have potential for environmentally friendly magnetic refrigeration systems.

Magnetic refrigeration is a clean technology that uses magnetic fields to manipulate the degree of ordering (or entropy) of electronic or nuclear magnetic dipoles in order to reduce a material's temperature and allow the material to serve as a refrigerant. New materials for refrigeration based on gadolinium-germanium-silicon alloys display a giant magnetocaloric effect due to unusual coupling between the material's magnetism and chemical structure.

Understanding this coupling is essential to moving this technology from the laboratory to the household. Magnetic refrigeration does not rely on hydrofluorocarbons (HFCs) used in conventional refrigeration systems. HFCs are greenhouse gases that contribute to global climate change when they escape into the atmosphere.

A collaboration between researchers from Argonne and Ames has now revealed key atomic-level information about these new materials that makes clear the role played by the nominally non-magnetic germanium-silicon ions in the giant magnetocaloric effect. In an article published in the June 15 issue of Physical Review Letters, the researchers describe how they used high-brilliance, circularly-polarized X-ray beams at the Advanced Photon Source to probe the magnetism of gadolinium and germanium ions as the material underwent its bond-breaking magneto-structural transition. In addition to the expected strong magnetization of gadolinium ions, the researchers found significant magnetization attached to the germanium ions.

“This is surprising and important,” said Argonne physicist Daniel Haskel, who led the research team. “Germanium was expected to be non-magnetic. Its magnetization is induced by the hybridization, or mixing, of otherwise non-magnetic germanium atomic orbitals with the magnetic gadolinium orbitals. This hybridization dramatically changes at the germanium-silicon bond-breaking transition, causing the destruction of magnetic ordering and leading to the giant magnetocaloric effect of these materials.”

By combining the novel experimental results with detailed numerical calculations of the electronic structure carried out at Ames Laboratory, the researchers were able to conclude that the magnetized germanium orbitals act as “magnetic bridges” in mediating the magnetic interactions across the distant gadolinium ions.

The magnetocaloric effect – a change in temperature accompanying a change in a material's magnetization – is largest near a material's intrinsic magnetic ordering temperature. In the case of rare-earth gadolinium, this ordering occurs near room temperature and results in a temperature increase of 3-4 K/per Tesla when a magnetic field is applied, making gadolinium the current material of choice for magnetic refrigeration near room temperature.

The prospects for a viable magnetic refrigeration technology recently became brighter with the report of a giant magnetocaloric effect in gadolinium-silicon-germanium alloys. The addition of non-magnetic silicon and germanium ions brings about a giant entropy change when germanium-silicon chemical bonds connecting the magnetism-carrying gadolinium ions are quickly formed or broken, respectively, by the application or removal of a magnetic field. As an added bonus, the magnetic ordering temperature can be tuned by changing the ratio or germanium to silicon.

"As a result of this work we now have a better understanding of the role of nonmagnetic elements, such as germanium, in enhancing magnetic interactions between the rare-earth metals in these materials,” said co-author and Ames Laboratory senior scientist Vitalij Pecharsky. “This discovery is counterintuitive, yet it opens up a range of exciting new opportunities towards the engineering of novel magnetic materials with predictable properties."

Other authors in the paper are Y. Lee, B. Harmon, Y. Mudryk, and K. Gschneidner of Ames and Z. Islam, J. Lang, and G. Srajer at Argonne.

Ames Laboratory, celebrating its 60th anniversary in 2007, is operated for the Department of Energy by Iowa State University. The Lab conducts research into various areas of national concern, including energy resources, the synthesis and study of new materials, high-speed computer design, and environmental cleanup and restoration.

With employees from more than 60 nations, Argonne National Laboratory brings the world's brightest scientists and engineers together to find exciting and creative new solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America 's scientific leadership and prepare the nation for a better future. Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

For more information, please contact Sylvia Carson (630/252-5510 or scarson@anl.gov) at Argonne.

Sylvia Carson | EurekAlert!
Further information:
http://www.anl.gov

More articles from Physics and Astronomy:

nachricht Comet or asteroid? Hubble discovers that a unique object is a binary
21.09.2017 | NASA/Goddard Space Flight Center

nachricht First users at European XFEL
21.09.2017 | European XFEL GmbH

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>