Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Computer models suggest planetary and extrasolar planet atmospheres

A gas, gas, gas

The world is abuzz with the discovery of an extrasolar, Earth-like planet around the star Gliese 581 that is relatively close to our Earth at 20 light years away in the constellation Libra.

Bruce Fegley, Jr., Ph.D., professor of earth and planetary sciences in Arts & Sciences at Washington University in St. Louis, has worked on computer models that can provide hints to what comprises the atmosphere of such planets and better-known celestial bodies in our own solar system.

New computer models, from both Earth-based spectroscopy and space mission data, are providing space scientists compelling evidence for a better understanding of planetary atmospheric chemistry. Recent findings suggest a trend of increasing water content in going from Jupiter (depleted in water), to Saturn (less enriched in water than other volatiles), to Uranus and Neptune, which have large water enrichments.

"The farther out you go in the solar system, the more water you find," said Fegley.

Fegley provided an overview of comparative planetary atmospheric chemistry at the 233rd American Chemical Society National Meeting, held March 25-29, 2007, in Chicago. Fegley and Katharina Lodders-Fegley, Ph.D., research associate professor of earth and planetary sciences, direct the university's Planetary Chemistry Laboratory.

"The theory about the Gas Giant planets (Jupiter, Saturn, Uranus, and Neptune) is that they have primary atmospheres, which means that their atmospheres were captured directly from the solar nebula during accretion of the planets," Fegley said.

Gas Giants

He said that Jupiter has more hydrogen and helium and less carbon, nitrogen and oxygen than the other Gas Giant planets, making its composition closer to that of the hydrogen- and helium-rich sun. The elements hydrogen, carbon and oxygen are predominantly found as water, the gases molecular hydrogen and methane and in the atmospheres of the Gas Giant planets.

"Spectroscopic observations and interior models show that Saturn, Uranus and Neptune are enriched in heavier elements," he said. "Jupiter, based on observations from the Galileo Probe, is depleted in water. People have thought that Galileo might just have gone into a dry area. But Earth-based observations show that the carbon monoxide abundance in Jupiter's atmosphere is consistent with the observed abundances of methane, hydrogen and water vapor. This pretty much validates the Galileo Probe finding."

The abundances of these four gases are related by the reaction CH4+H20 = CO+3H2. Thus, observations of the methane, hydrogen and CO abundances can be used to calculate the water vapor abundance. Likewise, Earth-based observations of methane, hydrogen and carbon monoxide in Saturn's atmosphere show that water is less enriched than methane.

In contrast, observations of methane, hydrogen and carbon monoxide in the atmospheres of Uranus and Neptune show that water is greatly enriched in these two planets. Although generally classed with Jupiter and Saturn, Uranus and Neptune are water planets with relatively thin gaseous envelopes.

"On the other hand, the terrestrial planets Venus, Earth and Mars have secondary atmospheres formed afterwards by outgassing — heating up the solid material that was accreted and then releasing the volatile compounds from it," Fegley said. "That then formed the earliest atmosphere."

He said that by plugging in models he's done on the outgassing of chondritic materials and using photochemical models of the effects of UV sunlight, he and his collaborator Laura Schaefer, a research assistant in the Washington University Department of Earth and Planetary Sciences, can speculate on the atmospheric composition of Earth-like planets in other solar systems.

"With new theoretical models we are able to surmise the outgassing of materials that went into forming the planets, and even make predictions about the atmospheres of extrasolar terrestrial planets," he said.

"Because the composition of the galaxy is relatively uniform, most stars are like the sun — hydrogen-rich with about the same abundances of rocky elements — we can predict what these planetary atmospheres would be like," Fegley said. "I think that the atmospheres of extrasolar Earth-like plants would be more like Mars or Venus than the Earth."

Fegley said that photosynthesis accounts for the oxygen in Earth's atmosphere; without it, the Earth's atmosphere would consist of nitrogen, carbon dioxide and water vapor, with only small amounts of oxygen. Oxygen is 21 percent of Earth's atmosphere; in contrast, Mars has about one-tenth of one percent made by UV sunlight destroying carbon dioxide.

"I see Mars today as a great natural laboratory for photochemistry; Venus is the same for thermochemistry, and Earth for biochemistry," he said. "Mars has such a thin atmosphere compared to Earth or Venus. UV light can penetrate all the way down to the Martian surface before it's absorbed. That same light on Earth is mainly absorbed in the ozone layer in the lower Earth stratosphere. Venus is so dense that light is absorbed by a cloud layer about 45 kilometers or so above the Venusian surface."

Tony Fitzpatrick | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>