Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Back on Track

20.06.2007
New Technique for Observing Faint Companions

Observing the image of a faint object that lies close to a star is a demanding task as the object is generally hidden in the glare of the star. Characterising this object, by taking spectra, is an even harder challenge. Still, thanks to ingenious scientists and a new ESO imaging spectrograph, this is now feasible, paving the way to an eldorado of many new thrilling discoveries.

These very high contrast observations are fundamental for directly imaging unknown extra-solar planets (i.e. planets orbiting a star other than the Sun), as well as low-mass stars and brown dwarfs, those failed stars that are too small to start burning hydrogen into helium.

Astronomer Niranjan Thatte and his colleagues developed a new method for exactly this purpose. The basis of the concept is relatively simple: while the positions of most of the features associated with the host star and artefacts produced by the telescope and the instrument scale with the wavelength, the location of a faint companion does not. So if the image has an internal reflection of the star masquerading as a planet, this phantom planet will be in one location in the image when looking in red light, and another when looking in blue; a real planet will stay at the same place no matter what colour of light one examines. Therefore, with the combined detection of spectra and position, one can see what is scaling, subtract it, and be left with what is fixed, that is the target dim object. Such observations can be done with specific instruments, called 'integral field spectrographs', such as the SINFONI instrument on ESO's VLT. This technique, termed Spectral Deconvolution (SD), although first proposed in 2002 for space-based applications, has never been applied to obtain spectra of a real object until now.

"We applied our new technique to a puzzling very small stellar companion - about twice the size of Jupiter - known as AB Doradus C and the outcome was surprising, "says Thatte.

Using SINFONI and this new technique, the astronomers could for the first time obtain a spectrum of the object that is free from the light of the brighter companion and that contains all the information necessary for a complete classification.

The new observations lead to a new temperature for the object and change the results that some of the same scientists derived in 2005 (ESO PR 02/05).

"This is how science progresses," says Laird Close, leader of the science team. "New instruments lead to better techniques and measurements, which often lead to new results, and one must happily change course."

The SINFONI observations were complemented with previous data obtained on ESO's VLT with the NACO instrument, which were stored in the ESO archive.

AB Doradus is a system of 2 pairs of stars (four stars in total: a quadruple system), lying 48 light-years away towards the Doradus constellation (the Swordfish).

AB Doradus A is the young major member of this system and has a faint companion, AB Dor C, just 3 astronomical units (AU) away, or three times the distance between the Earth and the Sun. In our Solar System, this would be within the asteroid belt between the orbits of Mars and Jupiter.

AB Dor C was imaged for the first time, thanks to ESO's VLT, in 2005 (ESO 02/05). The other members of the system are the pair AB Doradus BaBb (also first imaged in the previous work of 2005) located 133 AU from AB Dor A. While AB Doradus A has a mass about 85 % that of the Sun, AB Doradus C is almost 10 times less massive than AB Doradus A and belongs to the category of cool red dwarfs.

Red dwarfs are extremely interesting because their mass is at the border with that of brown dwarfs. A precise knowledge of these stars is therefore a necessary tile in our understanding of the evolution of stars. If AB Doradus C were only slightly less massive than its 93 Jupiter-mass, it would have failed to become a star, being instead a brown dwarf. As it is, the centre of AB Doradus C is slowly heating up, and in about a billion years its core will become hot enough to begin fusing hydrogen into helium, something a brown dwarf will never do.

"This red dwarf is 100 million times closer to its brighter companion than the whole system is from us and about 100 times less bright. It is thus a perfect example where our very high contrast technique is required," says team member Matthias Tecza.

From the previous observations this unique star seemed to be cooler than expected for an object of such a mass and age. The new, more precise observations show that this is not the case, as the observations are in good agreement with theory, in particular with the models developed by the group of Gilles Chabrier from Lyon, France.

With a temperature of about 3 000 degrees (about half as hot as the Sun) and a luminosity about one thousand times dimmer than the Sun, AB Doradus C lies on the exact track expected for a 75 million year old star with 9% the Sun's mass. AB Doradus C is the only such star (young and cool) with an accurate mass, hence the determination of an accurate temperature is critical for validating these models.

In the future one can thus use these tracks to extrapolate the mass of small young stars, once its temperature and luminosity are precisely determined.

"Small stars are back on the expected track," concludes team member Roberto Abuter.

Henri Boffin | alfa
Further information:
http://www.eso.org/public/outreach/press-rel/pr-2007/pr-28-07.html

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>