Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Nasa Scientist Finds A New Way To The Centre Of The Earth

Humans have yet to see Earth's centre, as did the characters in Jules Verne's science fiction classic, "Journey to the Center of the Earth." But a new NASA study proposes a novel technique to pinpoint more precisely the location of Earth's centre of mass and how it moves through space.

Knowing the location of the centre of mass, determined using measurements from sites on Earth's surface, is important because it provides the reference frame through which scientists determine the relative motions of positions on Earth's surface, in its atmosphere and in space. This information is vital to the study of global sea level change, earthquakes, volcanoes and Earth's response to the retreat of ice sheets after the last ice age.

The accuracy of estimates of the motion of Earth's centre of mass is uncertain, but likely ranges from 2 to 5 millimeters (.08 to .20 inches) a year. Donald Argus of NASA's Jet Propulsion Laboratory, Pasadena, Calif., developed the new technique, which estimates Earth's center of mass to within 1 millimeter (.04 inches) a year by precisely positioning sites on Earth's surface using a combination of four space-based techniques. The four techniques were developed and/or operated by NASA in partnership with other national and international agencies. Results of the new study appear in the June issue of Geophysical Journal International, which is jointly published by the Royal Astronomical Society and the Deutsche Geophysikalische Gesellschaft.

Scientists currently define Earth's centre in two ways: as the mass centre of solid Earth or as the mass centre of Earth's entire system, which combines solid Earth, ice sheets, oceans and atmosphere. Argus says there is room for improvement in these estimates.

"The past two international estimates of the motion of the Earth system's mass centre, made in 2000 and 2005, differ by 1.8 millimeters (.07 inches) a year," he said. "This discrepancy suggests the motion of Earth's mass centre is not as well known as we'd like."

Argus argues that movements in the mass of Earth's atmosphere and oceans are seasonal and do not accumulate enough to change Earth's mass centre. He therefore believes the mass centre of solid Earth provides a more accurate reference frame.

"By its very nature, Earth's reference frame is moderately uncertain no matter how it is defined," Argus said. "The problem is very much akin to measuring the centre of mass of a glob of Jell-O, because Earth is constantly changing shape due to tectonic and climatic forces. This new reference frame takes us a step closer to pinpointing Earth's exact centre."

Argus says this new reference frame could make important contributions to understanding global climate change. The inference that Earth is warming comes partly from observations of global sea level rise, believed to be due to ice sheets melting in Greenland, Antarctica and elsewhere. In recent years, global sea level has been rising faster, with the current rate at about 3 millimeters (.12 inches) a year. Uncertainties in the accuracy of the motion of Earth's centre of mass result in significant uncertainties in measuring this rate of change.

"Knowing the relative motions of the mass centre of Earth's system and the mass centre of the solid Earth can help scientists better determine the rate at which ice in Greenland and Antarctica is melting into the ocean," Argus explained. He said the new frame of reference will improve estimates of sea level rise from satellite altimeters like the NASA/French Space Agency Jason satellite, which rely on measurements of the location and motion of the mass center of Earth's system.

"For scientists studying post-glacial rebound, this new reference frame helps them better understand how viscous [gooey or sticky] Earth's solid mantle is, which affects how fast Earth's crust rises in response to the retreat of the massive ice sheets that covered areas such as Canada 20,000 years ago," he said. "As a result, they'll be able to make more accurate estimates of these vertical motions and can improve model predictions."

Scientists can also use the new information to more accurately determine plate motions along fault zones, improving our understanding of earthquake and volcanic processes.

The new technique combines data from a high-precision network of global positioning system receivers; a network of laser stations that track high-orbiting geodetic satellites called Laser Geodynamics Satellites, or Lageos; a network of radio telescopes that measure the position of Earth with respect to quasars at the edge of the universe, known as very long baseline interferometry; and a French network of precise satellite tracking instruments called Doppler Orbit and Radiopositioning Integrated by Satellite, or DORIS.

More information on Lageos is at .

More information on NASA's global positioning system research is at .
Geophysical Journal International
JPL is managed for NASA by the California Institute of Technology in Pasadena.
Royal Astronomical Society

Robert Massey | alfa
Further information:

More articles from Physics and Astronomy:

nachricht 'Frequency combs' ID chemicals within the mid-infrared spectral region
16.03.2018 | American Institute of Physics

nachricht Fraunhofer HHI have developed a novel single-polarization Kramers-Kronig receiver scheme
16.03.2018 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>