Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hidden Planet Pushes Star's Ring a Billion Miles Off-Center

14.06.2007
A young star's strange elliptical ring of dust likely heralds the presence of an undiscovered Neptune-sized planet, says a University of Rochester astronomer in the latest Monthly Notices of the Royal Astronomical Society.

Stars in the early stages of life are surrounded by dust clouds that thin out and dissipate as the star reaches maturity, becoming rings in their final stages. One star, however, has a dust ring that has long puzzled astronomers because it is not centered around the star as usual. Instead, the ring is elliptical, with the parent star off to one side.

"We wanted to know why this ring was off-center," says Alice C. Quillen, Associate Professor of Astronomy and author of the study. "People guessed there might be a planet in there, but nobody knew where it might be, or how big it might be. Now we've got a very good idea."

Roughly 250 planets have been discovered so far around stars other than our Sun. Most have been revealed by the way the planets influence their parent stars, but Quillen has been working for years on understanding the delicate interaction between stellar dust disks and the planets that shape them. She is now one of the world's experts in predicting planet size and position from the features of a star's dust ring.

Quillen used new images from the Hubble Space Telescope that caught the star, Fomalhaut, and its surrounding ring almost edge-on and in more detail than ever before. Fomalhaut, 25 light-years away, is the brightest star in the autumn sky. Using a device called a coronagraph that blocks out a star's light so dimmer objects near it can be seen, the Hubble revealed that Fomalhaut was indeed off-center within its ring. The images were also clear enough to show that the ring itself had a surprisingly sharp edge.

That sharp edge was the clue Quillen was looking for. Since ascertaining one of the first extra-solar planets using dust-ring analysis in 2002, Quillen has greatly strengthened her planet-ring interaction models. Treating the ring like a hydrodynamic structure, for instance, is necessary for younger stars whose dust is relatively fine and acts more like a fluid—while the physics of dust collision become dominant in older ring systems where the dust has begun clumping into larger bodies.

The sharp inside edge of Fomalhaut, Quillen calculated, demanded that a relatively small, Neptune-size planet was tucked right up against the inner side of the ring, using its gravity to toss dust in the area out of orbit.

According to Quillen's calculations, the ring is elliptical because the Neptunian planet's own orbit around Fomalhaut is elliptical—a curiosity in such a young system. When stars form from a giant cloud of gas and dust, the angular momentum of the cloud carries over to all the objects that form from the cloud, including new planets. Those new planets should, initially at least, orbit in nice, circular paths—not elliptical ones. Fomalhaut's ring is offset by 1.4 billion miles, more than 15 times the distance from the Earth to the Sun, suggesting the hidden planet's orbit is also tremendously skewed.

"Something had to skew that planet, and that's what we're working on now," says Quillen. "There may have been fantastic planetary collisions early on that changed their orbits. We're working on figuring out how many more planets of what size you'd need to account for that elliptical orbit, and to account for why there is no other dust inside that ring."

Quillen's model will remain just a theory until a new generation of telescopes can actually see the Formalhaut planets in question. These telescopes will be equipped with sophisticated coronagraphs that can block out Formalhaut's light enough to let the planets themselves shine through.

This research was funded by the National Institutes of Science and NASA.

Jonathan Sherwood | EurekAlert!
Further information:
http://www.rochester.edu

More articles from Physics and Astronomy:

nachricht A better way to weigh millions of solitary stars
15.12.2017 | Vanderbilt University

nachricht A chip for environmental and health monitoring
15.12.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>