Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Two qubits in action, new step towards the quantum computer

Researchers at Delft University of Technology have succeeded in carrying out calculations with two quantum bits, the building blocks of a possible future quantum computer. The Delft researchers are publishing an article about this important step towards a workable quantum computer in this week’s issue of Nature.

Quantum computers have superior qualities in comparison to the type of computers currently in use. If they are realised, then quantum computers will be able to carry out tasks that are beyond the abilities of all normal computers.

A quantum computer is based on the amazing properties of quantum systems. In these a quantum bit, also known as a qubit, exists in two states at the same time and the information from two qubits is entangled in a way that has no equivalent whatsoever in the normal world.

It is highly likely that workable quantum computers will need to be produced using existing manufacturing techniques from the chip industry. Working on this basis, scientists at Delft University of Technology are currently studying two types of qubits: one type makes use of tiny superconducting rings, and the other makes use of ‘quantum dots’.

Now for the first time a ‘controlled-NOT’ calculation with two qubits has been realised with the superconducting rings. This is important because it allows any given quantum calculation to be realised. The result was achieved by the PhD student Jelle Plantenberg in the team led by Kees Harmans and Hans Mooij. The research took place within the FOM (Dutch Foundation for Fundamental Research on Matter) concentration group for Solid State Quantum Information Processing.

Frank Nuijens | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

nachricht Light-driven atomic rotations excite magnetic waves
24.10.2016 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>