Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

British scientists create electron surf machine

13.06.2007
By precisely controlling billions of individual electrons every second, they hope to develop new computing systems and increase the security of digital communication.

Much like the conveyor belt in a production plant, NPL’s electron surf machine delivers electrons one by one in a reliable steady stream at a rate of more than a billion a second. Whilst small streams of electrons can already be produced, until now no one has found a way to deliver them in a controlled fashion at such a high rate.

NPL’s method involves creating oscillating waves of electro-static force which flow like the surf rolling into a beach. A single electron is placed on the crest of each wave and the electro-static waves are then focused in a particular direction or at a particular object.

The applications for the control of so many individual electrons include better new computers and ensuring absolute security for digital communication.

Better computers

All computer systems rely on a flow of electrical current through microprocessors. In existing computers, thousands of electrons flow in a disorderly manner in and out of each processor. This random motion causes significant heating (just feel the bottom of your laptop) and limits the computer’s efficiency. By controlling individual electrons, exactly the right amount of current can be targeted at the processor at exactly the right time, allowing the computer to undertake more tasks, run more efficiently and cope with more requests at once.

Secure communication

Digital communication relies on the break up of a signal into small pieces, which are transported through wired or wireless communication networks and then pieced together at the recipient’s end. Anyone wishing to eavesdrop needs to remove part of the message in transit to see or hear the information. The new electron surf machine could be used to encode the message into individual tiny light pulses (photons), making it much simpler to identify any which have been ‘removed’ by eavesdroppers, deterring snooping and alerting the sender or recipient that tampering has taken place.

Richard Moss | EurekAlert!
Further information:
http://www.npl.co.uk/

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>