Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Matter Flashed at Ultra Speed

13.06.2007
Robotic Telescope Measures Speed of Material Ejected in Cosmic Death

Using a robotic telescope at the ESO La Silla Observatory, astronomers have for the first time measured the velocity of the explosions known as gamma-ray bursts. The material is travelling at the extraordinary speed of more than 99.999% of the velocity of light, the maximum speed limit in the Universe.

"With the development of fast-slewing ground-based telescopes such as the 0.6-m REM telescope at ESO La Silla, we can now study in great detail the very first moments following these cosmic catastrophes," says Emilio Molinari, leader of the team that made the discovery.

Gamma-ray bursts (GRBs) are powerful explosions occurring in distant galaxies, that often signal the death of stars. They are so bright that, for a brief moment, they almost rival the whole Universe in luminosity. They last, however, for only a very short time, from less than a second to a few minutes. Astronomers have long known that, in order to emit such incredible power in so little time, the exploding material must be moving at a speed comparable with that of light, namely 300 000 km per second. By studying the temporal evolution of the burst luminosity, it has now been possible for the first time to precisely measure this velocity.

Gamma-ray bursts, which are unseen by our eyes, are discovered by artificial satellites. The collision of the gamma-ray burst jets into the surrounding gas generates an afterglow visible in the optical and near-infrared that can radiate for several weeks. An array of robotic telescopes were built on the ground, ready to catch this vanishing emission (see e.g. ESO 17/07). On 18 April and 7 June 2006, the NASA/PPARC/ASI Swift satellite detected two bright gamma-ray bursts. In a matter of a few seconds, their position was transmitted to the ground, and the REM telescope began automatically to observe the two GRB fields, detecting the near-infrared afterglows, and monitored the evolution of their luminosity as a function of time (the light curve). The small size of the telescope is compensated by its rapidity of slewing, which allowed astronomers to begin observations very soon after each GRB's detection (39 and 41 seconds after the alert, respectively), and to monitor the very early stages of their light curve.

The two gamma-ray bursts were located 9.3 and 11.5 billion light-years away, respectively.

For both events, the afterglow light curve initially rose, then reached a peak, and eventually started to decline, as is typical of GRB afterglows. The peak is, however, only rarely detected. Its determination is very important, since it allows a direct measurement of the expansion velocity of the explosion of the material. For both bursts, the velocity turns out to be very close to the speed of light, precisely 99.9997% of this value. Scientists use a special number, called the Lorentz factor, to express these high velocities. Objects moving much slower than light have a Lorentz factor of about 1, while for the two GRBs it is about 400.

"Matter is thus moving with a speed that is only different from that of light by three parts in a million," says Stefano Covino, co-author of the study. "While single particles in the Universe can be accelerated to still larger velocities - i.e. much larger Lorentz factors - one has to realise that in the present cases, it is the equivalent of about 200 times the mass of the Earth that acquired this incredible speed."

"You certainly wouldn't like to be in the way," adds team member Susanna Vergani.

The measurement of the Lorentz factor is an important step in understanding gamma-ray burst explosions. This is in fact one of the fundamental parameters of the theory which tries to explain these gigantic explosions, and up to now it was only poorly determined.

"The next question is which kind of 'engine' can accelerate matter to such enormous speeds," says Covino.

Henri Boffin | alfa
Further information:
http://www.eso.org/public/outreach/press-rel/pr-2007/phot-26-07.html

More articles from Physics and Astronomy:

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

nachricht Researchers create artificial materials atom-by-atom
28.03.2017 | Aalto University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>