Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Matter Flashed at Ultra Speed

13.06.2007
Robotic Telescope Measures Speed of Material Ejected in Cosmic Death

Using a robotic telescope at the ESO La Silla Observatory, astronomers have for the first time measured the velocity of the explosions known as gamma-ray bursts. The material is travelling at the extraordinary speed of more than 99.999% of the velocity of light, the maximum speed limit in the Universe.

"With the development of fast-slewing ground-based telescopes such as the 0.6-m REM telescope at ESO La Silla, we can now study in great detail the very first moments following these cosmic catastrophes," says Emilio Molinari, leader of the team that made the discovery.

Gamma-ray bursts (GRBs) are powerful explosions occurring in distant galaxies, that often signal the death of stars. They are so bright that, for a brief moment, they almost rival the whole Universe in luminosity. They last, however, for only a very short time, from less than a second to a few minutes. Astronomers have long known that, in order to emit such incredible power in so little time, the exploding material must be moving at a speed comparable with that of light, namely 300 000 km per second. By studying the temporal evolution of the burst luminosity, it has now been possible for the first time to precisely measure this velocity.

Gamma-ray bursts, which are unseen by our eyes, are discovered by artificial satellites. The collision of the gamma-ray burst jets into the surrounding gas generates an afterglow visible in the optical and near-infrared that can radiate for several weeks. An array of robotic telescopes were built on the ground, ready to catch this vanishing emission (see e.g. ESO 17/07). On 18 April and 7 June 2006, the NASA/PPARC/ASI Swift satellite detected two bright gamma-ray bursts. In a matter of a few seconds, their position was transmitted to the ground, and the REM telescope began automatically to observe the two GRB fields, detecting the near-infrared afterglows, and monitored the evolution of their luminosity as a function of time (the light curve). The small size of the telescope is compensated by its rapidity of slewing, which allowed astronomers to begin observations very soon after each GRB's detection (39 and 41 seconds after the alert, respectively), and to monitor the very early stages of their light curve.

The two gamma-ray bursts were located 9.3 and 11.5 billion light-years away, respectively.

For both events, the afterglow light curve initially rose, then reached a peak, and eventually started to decline, as is typical of GRB afterglows. The peak is, however, only rarely detected. Its determination is very important, since it allows a direct measurement of the expansion velocity of the explosion of the material. For both bursts, the velocity turns out to be very close to the speed of light, precisely 99.9997% of this value. Scientists use a special number, called the Lorentz factor, to express these high velocities. Objects moving much slower than light have a Lorentz factor of about 1, while for the two GRBs it is about 400.

"Matter is thus moving with a speed that is only different from that of light by three parts in a million," says Stefano Covino, co-author of the study. "While single particles in the Universe can be accelerated to still larger velocities - i.e. much larger Lorentz factors - one has to realise that in the present cases, it is the equivalent of about 200 times the mass of the Earth that acquired this incredible speed."

"You certainly wouldn't like to be in the way," adds team member Susanna Vergani.

The measurement of the Lorentz factor is an important step in understanding gamma-ray burst explosions. This is in fact one of the fundamental parameters of the theory which tries to explain these gigantic explosions, and up to now it was only poorly determined.

"The next question is which kind of 'engine' can accelerate matter to such enormous speeds," says Covino.

Henri Boffin | alfa
Further information:
http://www.eso.org/public/outreach/press-rel/pr-2007/phot-26-07.html

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>