Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Silicon nanowires upgrade data-storage technology

Scientists at the National Institute of Standards and Technology (NIST), along with colleagues at George Mason University and Kwangwoon University in Korea, have fabricated a memory device that combines silicon nanowires with a more traditional type of data-storage. Their hybrid structure may be more reliable than other nanowire-based memory devices recently built and more easily integrated into commercial applications.

As reported in a recent paper,* the device is a type of “non-volatile” memory, meaning stored information is not lost when the device is without power. So-called “flash” memory (used in digital camera memory cards, USB memory sticks, etc.) is a well-known example of electronic non-volatile memory. In this new device, nanowires are integrated with a higher-end type of non-volatile memory that is similar to flash, a layered structure known as semiconductor-oxide-nitride-oxide-semiconductor (SONOS) technology. The nanowires are positioned using a hands-off self-alignment technique, which could allow the production cost—and therefore the overall cost—of large-scale viable devices to be lower than flash memory cards, which require more complicated fabrication methods.

The researchers grew the nanowires onto a layered oxide-nitride-oxide substrate. Applying a positive voltage across the wires causes electrons in the wires to tunnel down into the substrate, charging it. A negative voltage causes the electrons to tunnel back up into the wires. This process is the key to the device’s memory function: when fully charged, each nanowire device stores a single bit of information, either a “0” or a “1” depending on the position of the electrons. When no voltage is present, the stored information can be read.

The device combines the excellent electronic properties of nanowires with established technology, and thus has several characteristics that make it very promising for applications in non-volatile memory. For example, it has simple read, write, and erase capabilities. It boasts a large memory window—the voltage range over which it stores information—which indicates good memory retention and a high resistance to disturbances from outside voltages. The device also has a large on/off current ratio, a property that allows the circuit to clearly distinguish between the “0” and “1” states.

Two advantages the NIST design may hold over alternative proposals for nanowire-based memory devices, the researchers say, are better stability at higher temperatures and easier integration into existing chip fabrication technology.

* Q. Li, X. Zhu, H. Xiong, S.-M. Koo, D.E. Ioannou, J. Kopanski, J.S. Suehle and C.A. Richter. Silicon nanowire on oxide/nitride/oxide for memory application. Nanotechnology 18 (2007) 235204.

Michael E. Newman | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Sharpening the X-ray view of the nanocosm
23.03.2018 | Changchun Institute of Optics, Fine Mechanics and Physics

nachricht Drug or duplicate?
23.03.2018 | Fraunhofer-Institut für Angewandte Festkörperphysik IAF

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>