Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New quantum key system combines speed, distance

11.06.2007
Researchers at the National Institute of Standards and Technology (NIST) have built a prototype high-speed quantum key distribution (QKD) system, based on a new detector system that achieves dramatically lower noise levels than similar systems. The new system, they say, can perform a theoretically unbreakable “one-time pad” encryption, transmission and decryption of a video signal in real-time over a distance of at least 10 kilometers.

Key distribution—the problem of ensuring that both the sender and receiver of an encrypted message (and no one else) share the same long string of random digits (the so-called “key”) used to encode and decode the message—has always been one of the most important challenges in cryptography. Since the 1980’s it’s been recognized that the unique properties of quantum mechanics—the fact that certain measurements cannot be made without altering the thing measured—offered the possibility of a system that could transmit as long a key as desired between two parties with no chance that it could be copied undetectably by a third party.

Since then the race has been on to build a fast, practical and reliable QKD system. One important requirement for any candidate system is that it be compatible with existing fiber-optic telecom networks that transmit at wavelengths of either 1550 or 1310 nanometers (nm) to reach the greatest distance. Another requirement is a highly efficient photon detector that can detect single photons reliably without introducing significant amounts of “noise.” One of the best low-noise detectors, a silicon-based avalanche photo diode (Si-APD), does not function at the telecom wavelengths. Instead, it operates best at much shorter wavelengths around 700 nm. To take advantage of the Si-APD, the NIST group designed a sub-system to “up-convert” single photons from a transmission wavelength of 1310 nm to 710 nm for high-efficiency detection.

Their QKD system that incorporates this up-conversion technique, described in a recent paper,* generates and transmits secure keys at a rate of over half a million bits per second over 10 km of optical fiber, fast enough to encrypt streaming digital video using one-time pad in real time. The group also has transmitted secure keys at rates near 10 kilobits per second at five times that distance. The same team last year set a speed record for transmission of secure keys over a kilometer of fiber (see www.nist.gov/public_affairs/releases/quantumfiber.htm). This work improves the distance by at least 10 times.

Advantages of the new system, according to the research team, include high speed, high efficiency, low noise and convenience of operation. The fact that it uses a 1310 nm transmission wavelength somewhat limits the propagation distance but adds the advantage that the parallel “classical-quantum” communication, which is needed for a full QKD system, can be realized in a single fiber without significant interference. Details of NIST’s up-conversion QKD research are available at http://w3.antd.nist.gov/quin.shtml.

Michael Baum | EurekAlert!
Further information:
http://www.nist.gov/public_affairs/releases/quantumfiber.htm
http://w3.antd.nist.gov/quin.shtml

More articles from Physics and Astronomy:

nachricht NASA's Fermi catches gamma-ray flashes from tropical storms
25.04.2017 | NASA/Goddard Space Flight Center

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>