Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New quantum key system combines speed, distance

11.06.2007
Researchers at the National Institute of Standards and Technology (NIST) have built a prototype high-speed quantum key distribution (QKD) system, based on a new detector system that achieves dramatically lower noise levels than similar systems. The new system, they say, can perform a theoretically unbreakable “one-time pad” encryption, transmission and decryption of a video signal in real-time over a distance of at least 10 kilometers.

Key distribution—the problem of ensuring that both the sender and receiver of an encrypted message (and no one else) share the same long string of random digits (the so-called “key”) used to encode and decode the message—has always been one of the most important challenges in cryptography. Since the 1980’s it’s been recognized that the unique properties of quantum mechanics—the fact that certain measurements cannot be made without altering the thing measured—offered the possibility of a system that could transmit as long a key as desired between two parties with no chance that it could be copied undetectably by a third party.

Since then the race has been on to build a fast, practical and reliable QKD system. One important requirement for any candidate system is that it be compatible with existing fiber-optic telecom networks that transmit at wavelengths of either 1550 or 1310 nanometers (nm) to reach the greatest distance. Another requirement is a highly efficient photon detector that can detect single photons reliably without introducing significant amounts of “noise.” One of the best low-noise detectors, a silicon-based avalanche photo diode (Si-APD), does not function at the telecom wavelengths. Instead, it operates best at much shorter wavelengths around 700 nm. To take advantage of the Si-APD, the NIST group designed a sub-system to “up-convert” single photons from a transmission wavelength of 1310 nm to 710 nm for high-efficiency detection.

Their QKD system that incorporates this up-conversion technique, described in a recent paper,* generates and transmits secure keys at a rate of over half a million bits per second over 10 km of optical fiber, fast enough to encrypt streaming digital video using one-time pad in real time. The group also has transmitted secure keys at rates near 10 kilobits per second at five times that distance. The same team last year set a speed record for transmission of secure keys over a kilometer of fiber (see www.nist.gov/public_affairs/releases/quantumfiber.htm). This work improves the distance by at least 10 times.

Advantages of the new system, according to the research team, include high speed, high efficiency, low noise and convenience of operation. The fact that it uses a 1310 nm transmission wavelength somewhat limits the propagation distance but adds the advantage that the parallel “classical-quantum” communication, which is needed for a full QKD system, can be realized in a single fiber without significant interference. Details of NIST’s up-conversion QKD research are available at http://w3.antd.nist.gov/quin.shtml.

Michael Baum | EurekAlert!
Further information:
http://www.nist.gov/public_affairs/releases/quantumfiber.htm
http://w3.antd.nist.gov/quin.shtml

More articles from Physics and Astronomy:

nachricht SF State astronomer searches for signs of life on Wolf 1061 exoplanet
20.01.2017 | San Francisco State University

nachricht Molecule flash mob
19.01.2017 | Technische Universität Wien

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>