Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Modeling cell division : How a cell interacts with its microenvironment

11.06.2007
Division is a key step in the life of cells and involves complex dynamic interplay between a large number of molecular components. CNRS biologists at the Institut Curie and theoretical physicists of the Max Planck Institute in Germany have devised a theoretical model of cell division of great predictive value.

They have used microtechnology to study individual cell divisions as their environment changes. Based on observations of a great many cells, the researchers have devised a theoretical model that predicts the orientation of cell division. The model, which is reported in the 24 May 2007 issue of Nature, is based on calculation of the forces exerted on the mitotic spindle within the cell, and describes how cells divide normally and what happens when something goes awry. The model shows that certain configurations of the microenvironment induce asymmetric cell division. Once applied to tissues, the model will enable diagnoses to be refined, by describing the abnormal division of diseased cells.

Division is an essential stage in the life of all cells: it is involved in growth of the organism, repair of wounds or infections, and regular renewal of cells. At any given moment, 250 000 million cells are dividing in our bodies. Each of these cells has a very precisely defined location, which is essential to maintaining the shape of tissues and organs. Constraints imposed by other cells—the environment—influence the division and positioning of daughter cells.

Manuel Théry in the CNRS team of Michel Bornens has developed an original approach which he is now pursuing at the Commissariat à l’Energie Atomique in Grenoble(1), to study how a cell’s surroundings affect its division. A method called micropatterning is used to modulate the cell’s environment and observe its response, by imposing a given contour on the cell while giving it different adhesion zones, as if it were surrounded by other cells. This reproduces the spatial information that a cell is likely to receive within its tissue.

The CNRS team of Michel Bornens at the Institut Curie and the theoretical physics group of Frank Jülicher, Director of the Max Planck Institute for the Physics of Complex Systems in Dresden, Germany, have joined forces to use this microtechnology to model cell division. They have measured the orientations of thousands of cell divisions and used their findings to propose a mechanical model of the orientation of the mitotic spindle, an ephemeral cellular structure present only during cell division, based on the activation of motor molecules at the cell surface. These motors, which are found where the cell contacts its microenvironment, pull on the astral microtubules and orient the spindle. This mechanism aligns the cell’s plane of division with the geometry of its environment.

The researchers have also shown that certain spatial configurations of the cellular microenvironment induce asymmetric orientations of the spindle. Whether or not cell division is symmetric is primordial in the fate of the resulting daughter cells. These results could therefore have interesting applications in the control of the symmetric or asymmetric divisions of stem cells in vitro.

Only microtechnologies such as the micropatterning technique can be used to study the individual “sensitivity” of cells and to derive laws to predict the distribution of cell division orientations, without knowing the details of the molecular mechanisms involved. These laws apply to an embryo or to an organism that is undergoing renewal. In time it may prove possible to describe the mechanics brought into play during development. This may not only result from but also actively regulates the genetics underpinning tissue growth.

It is now possible to quantify precisely a cell’s capacity to respond to its environment, and to identify cells that behave “abnormally”, like cancer cells. Once this model can be applied to tissues, physicians will be able to refine their diagnosis by gathering information on the way division is perturbed in diseased cells.

This work illustrates the value of exchanging skills and know-how, and shows how the bringing together of researchers from different backgrounds, which has long been central to the Institut Curie’s approach, generates a dynamic environment conducive to creativity. In particular, one of the great originalities of the Institut Curie has been to develop collaborations between physicists and biologists. This interface affords another vision of the world of the living cell, and promises much in our understanding of the complexity of living organisms.

(1) Manuel Théry is currently at the Laboratoire Biopuces, in the Institut de Recherches en Technologies et Sciences pour le Vivant (iRTSV) of the Commissariat à l’ Energie Atomique in Grenoble.

Catherine Goupillon | alfa
Further information:
http://www.nature.com/nature/index.html

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>