Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A step nearer to understanding superconductivity

08.06.2007
Transporting energy without any loss, travelling in magnetically levitated trains, carrying out medical imaging (MRI) with small-scale equipment: all these things could come true if we had superconducting materials that worked at room temperature.

Today, researchers at CNRS have taken another step forward on the road leading to this ultimate goal. They have revealed the metallic nature of a class of so-called critical high-temperature superconducting materials. This result, which was published in the 31 May 2007 issue of the journal Nature, has been eagerly awaited for 20 years. It paves the way to an understanding of this phenomenon and makes it possible to contemplate its complete theoretical description.

Superconductivity is a state of matter characterized by zero electrical resistance and impermeability to a magnetic field. For instance, it is already used in medical imaging (MRI devices), and could find spectacular applications in the transport and storage of electrical energy without loss, the development of transport systems based on magnetic levitation, wireless communication and even quantum computers. However, for now, such applications are limited by the fact that superconductivity only occurs at very low temperatures. In fact, it was only once a way of liquefying helium had been developed, which requires a temperature of 4.2 kelvins (-269 °C), that superconductivity was discovered, in 1911 (a discovery for which the Nobel Prize was awarded two years later.)

Since the end of the 1980s (Nobel Prize in 1987), researchers have managed to obtain ‘high temperature’ superconducting materials: some of these compounds can be made superconducting simply by using liquid nitrogen (77 K, or -196 °C). The record critical temperature (the phase transition temperature below which superconductivity occurs) is today 138 K (-135 °C). This new class of superconductors, which are easier and cheaper to use, has given fresh impetus to the race to find ever higher critical temperatures, with the ultimate goal of obtaining materials which are superconducting at room temperature. However, until now, researchers have been held back by some fundamental questions. What causes superconductivity at microscopic scales" How do electrons behave in such materials"

Researchers at the National Laboratory for Pulsed Magnetic Fields2, working together with researchers at Sherbrooke, have observed ‘quantum oscillations’, thanks to their experience in working with intense magnetic fields. They subjected their samples to a magnetic field of as much as 62 teslas (a million times stronger than the Earth’s magnetic field), at very low temperatures (between 1.5 K and 4.2 K). The magnetic field destroys the superconducting state, and the sample, now in a normal state, shows an oscillation of its electrical resistance as a function of the magnetic field. Such an oscillation is characteristic of metals: it means that, in the samples that were studied, the electrons behaved in the same way as in ordinary metals.

The researchers will be able to use this discovery, which has been eagerly awaited for 20 years, to improve their understanding of critical high-temperature superconductivity, which until now had resisted all attempts at modeling it. The discovery has been effective in sorting out the many theories which had emerged to explain the phenomenon, and provides a firm foundation on which to build a new theory. It will make it possible to design more efficient materials, with critical temperatures closer to room temperature.

Aimee Bartosik | EurekAlert!
Further information:
http://www.cnrs.fr

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>