Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When atoms collide

05.06.2007
Scientists at the UK’s National Physical Laboratory (NPL) have proposed a new way to determine accurate time faster.

Very precise time keeps the Internet and e-mail functioning, ensures television broadcasts arrive at our TVs and is integral to a network of global navigation satellites (such as the Global Positioning System) used for precision mapping and surveying, environmental monitoring and personal location-based services.

But time can only be useful if it is the same for everyone. And that requires a single source against which we can all check our clocks. The caesium fountain that NPL operates is one of only a handful of highly precise measurement devices around the world that inform the global primary time standard – the definition of accurate time. NPL’s atomic fountain measures the accuracy of existing time standards and feedback readings to inform any adjustments to Coordinated Universal Time – the basis for the worldwide system of timekeeping.

NPL’s instruments do not simply measure time. They measure the absorption of electromagnetic waves by caesium atoms and detect the resultant changes in the internal state of those atoms. The absorption peaks at a specific electromagnetic frequency. They can then lock this frequency and use the number of oscillations of that frequency, during a given period of time, to define a second, like the ticks of a conventional clock. One second, for example, corresponds to just over nine billion oscillations of an electromagnetic signal locked to the peak change in caesium atoms.

But an atomic clock is never perfect. One of the challenges when identifying the accurate frequency reference is that it tends to fluctuate very slightly and its average value is only known within a certain error range. In atomic fountains, these tiny errors are largely due to atoms colliding with each other inside the fountain. This is known as a collisional frequency shift. There have been several theories about what affects the collision shift and how to compensate for it but existing methods can take days or even weeks. The team at NPL has discovered a potential new approach, reducing the time it takes to confirm the accuracy of a frequency reading to a matter of hours – ten times faster than it can currently be done. It is based around the state of the atoms during their flight in the fountain. They can be in one of two states – upper or lower, or in a combination of the two. The NPL team in collaboration with NIST (USA) and PTB (Germany) discovered that the effect the collisions have on the frequency signal depends on which state the atoms are most in. Upper results in a negative shift, lower in a positive shift. This suggests the existence of a split between upper and lower state atoms that cancels the shift out and results in no affect to the frequency signal. Operating a caesium fountain at this ‘zero-shift’ point is an attractive proposition as it removes the need to compensate for collision shifts and accelerates the process of confirming the accuracy of frequency standards. This means laboratories providing the primary time standard can feed back more readings in any given period of time, increasing the accuracy of recommended adjustments to UTC, potentially improving the overall accuracy of the world’s time.

Fiona-Grace Peppler | EurekAlert!
Further information:
http://www.npl.co.uk/

More articles from Physics and Astronomy:

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

nachricht NASA's fermi finds possible dark matter ties in andromeda galaxy
22.02.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Organ-on-a-chip mimics heart's biomechanical properties

23.02.2017 | Health and Medicine

Light-driven reaction converts carbon dioxide into fuel

23.02.2017 | Life Sciences

Oil and gas wastewater spills alter microbes in West Virginia waters

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>