Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When atoms collide

05.06.2007
Scientists at the UK’s National Physical Laboratory (NPL) have proposed a new way to determine accurate time faster.

Very precise time keeps the Internet and e-mail functioning, ensures television broadcasts arrive at our TVs and is integral to a network of global navigation satellites (such as the Global Positioning System) used for precision mapping and surveying, environmental monitoring and personal location-based services.

But time can only be useful if it is the same for everyone. And that requires a single source against which we can all check our clocks. The caesium fountain that NPL operates is one of only a handful of highly precise measurement devices around the world that inform the global primary time standard – the definition of accurate time. NPL’s atomic fountain measures the accuracy of existing time standards and feedback readings to inform any adjustments to Coordinated Universal Time – the basis for the worldwide system of timekeeping.

NPL’s instruments do not simply measure time. They measure the absorption of electromagnetic waves by caesium atoms and detect the resultant changes in the internal state of those atoms. The absorption peaks at a specific electromagnetic frequency. They can then lock this frequency and use the number of oscillations of that frequency, during a given period of time, to define a second, like the ticks of a conventional clock. One second, for example, corresponds to just over nine billion oscillations of an electromagnetic signal locked to the peak change in caesium atoms.

But an atomic clock is never perfect. One of the challenges when identifying the accurate frequency reference is that it tends to fluctuate very slightly and its average value is only known within a certain error range. In atomic fountains, these tiny errors are largely due to atoms colliding with each other inside the fountain. This is known as a collisional frequency shift. There have been several theories about what affects the collision shift and how to compensate for it but existing methods can take days or even weeks. The team at NPL has discovered a potential new approach, reducing the time it takes to confirm the accuracy of a frequency reading to a matter of hours – ten times faster than it can currently be done. It is based around the state of the atoms during their flight in the fountain. They can be in one of two states – upper or lower, or in a combination of the two. The NPL team in collaboration with NIST (USA) and PTB (Germany) discovered that the effect the collisions have on the frequency signal depends on which state the atoms are most in. Upper results in a negative shift, lower in a positive shift. This suggests the existence of a split between upper and lower state atoms that cancels the shift out and results in no affect to the frequency signal. Operating a caesium fountain at this ‘zero-shift’ point is an attractive proposition as it removes the need to compensate for collision shifts and accelerates the process of confirming the accuracy of frequency standards. This means laboratories providing the primary time standard can feed back more readings in any given period of time, increasing the accuracy of recommended adjustments to UTC, potentially improving the overall accuracy of the world’s time.

Fiona-Grace Peppler | EurekAlert!
Further information:
http://www.npl.co.uk/

More articles from Physics and Astronomy:

nachricht Smooth propagation of spin waves using gold
26.06.2017 | Toyohashi University of Technology

nachricht A 100-year-old physics problem has been solved at EPFL
23.06.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>