Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When atoms collide

05.06.2007
Scientists at the UK’s National Physical Laboratory (NPL) have proposed a new way to determine accurate time faster.

Very precise time keeps the Internet and e-mail functioning, ensures television broadcasts arrive at our TVs and is integral to a network of global navigation satellites (such as the Global Positioning System) used for precision mapping and surveying, environmental monitoring and personal location-based services.

But time can only be useful if it is the same for everyone. And that requires a single source against which we can all check our clocks. The caesium fountain that NPL operates is one of only a handful of highly precise measurement devices around the world that inform the global primary time standard – the definition of accurate time. NPL’s atomic fountain measures the accuracy of existing time standards and feedback readings to inform any adjustments to Coordinated Universal Time – the basis for the worldwide system of timekeeping.

NPL’s instruments do not simply measure time. They measure the absorption of electromagnetic waves by caesium atoms and detect the resultant changes in the internal state of those atoms. The absorption peaks at a specific electromagnetic frequency. They can then lock this frequency and use the number of oscillations of that frequency, during a given period of time, to define a second, like the ticks of a conventional clock. One second, for example, corresponds to just over nine billion oscillations of an electromagnetic signal locked to the peak change in caesium atoms.

But an atomic clock is never perfect. One of the challenges when identifying the accurate frequency reference is that it tends to fluctuate very slightly and its average value is only known within a certain error range. In atomic fountains, these tiny errors are largely due to atoms colliding with each other inside the fountain. This is known as a collisional frequency shift. There have been several theories about what affects the collision shift and how to compensate for it but existing methods can take days or even weeks. The team at NPL has discovered a potential new approach, reducing the time it takes to confirm the accuracy of a frequency reading to a matter of hours – ten times faster than it can currently be done. It is based around the state of the atoms during their flight in the fountain. They can be in one of two states – upper or lower, or in a combination of the two. The NPL team in collaboration with NIST (USA) and PTB (Germany) discovered that the effect the collisions have on the frequency signal depends on which state the atoms are most in. Upper results in a negative shift, lower in a positive shift. This suggests the existence of a split between upper and lower state atoms that cancels the shift out and results in no affect to the frequency signal. Operating a caesium fountain at this ‘zero-shift’ point is an attractive proposition as it removes the need to compensate for collision shifts and accelerates the process of confirming the accuracy of frequency standards. This means laboratories providing the primary time standard can feed back more readings in any given period of time, increasing the accuracy of recommended adjustments to UTC, potentially improving the overall accuracy of the world’s time.

Fiona-Grace Peppler | EurekAlert!
Further information:
http://www.npl.co.uk/

More articles from Physics and Astronomy:

nachricht Astronomers find unexpected, dust-obscured star formation in distant galaxy
24.03.2017 | University of Massachusetts at Amherst

nachricht Gravitational wave kicks monster black hole out of galactic core
24.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>