Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MU Physicist Says Testing Technique for Gravitomagnetic Field is Ineffective

04.06.2007
Existence of gravitomagnetic field related to Einstein's theory of general relativity, origin of universe

Albert Einstein's theory of general relativity has fascinated physicists and generated debate about the origin of the universe and the structure of objects like black holes and complex stars called quasars. A major focus has been on confirming the existence of the gravitomagnetic field, as well as gravitational waves. A physicist at the University of Missouri-Columbia recently argued in a paper that the interpretation of the results of Lunar Laser Ranging (LLR), which is being used to detect the gravitomagnetic field, is incorrect because LLR is not currently sensitive to gravitomagnetism and not effective in measuring it.

The theory of general relativity includes two different fields: static and non-static fields. The gravitomagnetic field is a non-static field that is important for the understanding of general relativity and the universe.

"If the existence of the gravitomagnetic field is confirmed, then our understanding of general relativity is correct and can be used to explain things such as quasar jets and accretion disks in black holes," said Sergei Kopeikin, associate professor of physics in MU's College of Arts and Science. "General relativity explains the origin of the universe, and that's important for all humankind, irrespective of religion or creed. We all live in the same world, and we must understand this place in which we live."

Kopeikin said there are four techniques used to test for the gravitomagnetic field. The first, called Gravity Probe B, used a gyroscope in orbit around the earth to measure for the field. It is supported by NASA and took nearly 40 years to develop; scientists recently conducted the experiment and are now analyzing the results. A second experiment involved satellites called Lageos and detected a gravitomagnetic field with a precision not exceeding 15 percent. A third experiment was developed by Kopeikin and other scientists in 2001 and used Very Long Baseline Interferometry (VLBI) to test for the gravitomagnetic field of Jupiter; this experiment detected the field with approximately 20 percent precision.

LLR is a recent testing technique. It involves shooting a laser beam at mirrors called retroflectors, which are located on the moon, and then measuring the roundtrip light travel time of the beam. In a response to a paper about LLR, Kopeikin argued in a letter published in Physical Review Letters that the interpretation of LLR results is flawed. He said analyses of his own and other scientists' research reveal that this approach to the LLR technique does not measure what it claims.

The LLR technique involves processing data with two sets of mathematical equations, one related to the motion of the moon around the earth, and the other related to the propagation of the beam from earth to the moon. These equations can be written in different ways based on "gauge freedom," the idea that arbitrary coordinates can be used to describe gravitational physics. Kopeikin analyzed the gauge freedom of the LLR technique and showed that the manipulation of the mathematical equations is causing scientists to derive results that are not apparent in the data itself.

"According to Einstein's theory, only coordinate-independent quantities are measurable," Kopeikin said. "The effect the LLR scientists claimed as detectable doesn't exist, as it vanishes in the observer's frame. The equations add up to zero, having nothing to do with the real data. The results appear this way because of insufficient analytic control of the coordinate effects in the sophisticated computer code used for numerical LLR data processing. We need to focus on the real physical effects of gravity, not the mathematical effects depending exclusively on the choice of coordinates."

A reply from the scientists who support LLR also has published in Physical Review Letters and argues that there are aspects of the technique that cause them to believe it merits worth.

Katherine Kostiuk | EurekAlert!
Further information:
http://www.missouri.edu

More articles from Physics and Astronomy:

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Molecular volume control

22.08.2017 | Life Sciences

When fish swim in the holodeck

22.08.2017 | Life Sciences

Biochemical 'fingerprints' reveal diabetes progression

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>