Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Galaxy Cluster Takes It to the Extreme

01.06.2007
Evidence for an awesome upheaval in a massive galaxy cluster was discovered in an image made by NASA's Chandra X-ray Observatory. The origin of a bright arc of ferociously hot gas extending over two million light years requires one of the most energetic events ever detected.

The cluster of galaxies is filled with tenuous gas at 170 million degree Celsius that is bound by the mass equivalent of a quadrillion, or 1,000 trillion, suns. The temperature and mass make this cluster a giant among giants.

VLA Radio Image of 3C438 "The huge feature detected in the cluster, combined with the high temperature, points to an exceptionally dramatic event in the nearby Universe," said Ralph Kraft of the Harvard-Smithsonian Center for Astrophysics (CfA) in Cambridge, Mass., and leader of a team of astronomers involved in this research. "While we're not sure what caused it, we've narrowed it down to a couple of exciting possibilities."

The favored explanation for the bright X-ray arc is that two massive galaxy clusters are undergoing a collision at about 4 million miles per hour. Shock waves generated by the violent encounter of the clusters' hot gas clouds could produce a sharp change in pressure along the boundary where the collision is occurring, giving rise to the observed arc-shaped structure which resembles a titanic weather front.

"Although this would be an extreme collision, one of the most powerful ever seen, we think this may be what is going on," said team member Martin Hardcastle, of the University of Hertfordshire, United Kingdom.

Images of 3C438 and Surrounding Galaxy Cluster A problem with the collision theory is that only one peak in the X-ray emission is seen, whereas two are expected. Longer observations with Chandra and the XMM-Newton X-ray observatories should help determine how serious this problem is for the collision hypothesis.

Another possible explanation is that the disturbance was caused by an outburst generated by the infall of matter into a supermassive black hole located in a central galaxy. The black hole inhales much of the matter but expels some of it outward in a pair of high-speed jets, heating and pushing aside the surrounding gas.

Such events are known to occur in this cluster. The galaxy 3C438 in the central region of the cluster is known to be a powerful source of explosive activity, which is presumably due to a central supermassive black hole. But the energy in these outbursts is not nearly large enough to explain the Chandra data.

"If this event was an outburst from a supermassive black hole, then it's by far the most powerful one ever seen," said team member Bill Forman, also of CfA.

The phenomenal amount of energy involved implies a very large amount of mass would have been swallowed by the black hole, about 30 billion times the Sun's mass over a period of 200 million years. The authors consider this rate of black hole growth implausible.

"These values have never been seen before and, truthfully, are hard to believe," said Kraft.

These results were presented at the American Astronomical Society meeting in Honolulu, HI, and will appear in an upcoming issue of The Astrophysical Journal. NASA's Marshall Space Flight Center, Huntsville, Ala., manages the Chandra program for the agency's Science Mission Directorate. The Smithsonian Astrophysical Observatory controls science and flight operations from the Chandra X-ray Center in Cambridge, Mass.

Megan Watzke | EurekAlert!
Further information:
http://www.cfa.harvard.edu

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>