Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel low temperature laser processing of silicon for hybrid organic/inorganic solar cells

31.05.2007
Researchers at the Advanced Technology Institute (ATI) at the University of Surrey have reported a new technique to UV laser processing of thin film silicon for applications such as display control circuits and solar cells, which could lead to device performances at lower costs.

The improvements are achieved with a new pulse profile for crystallisation of amorphous silicon to nanocrystalline as reported in the April issue of Applied Physics Letters (90, 171912). Lead investigator Dr Damitha Adikaari comments: “The use of a modified laser pulse shape results in more efficient transformation of amorphous silicon into its crystalline form, with significant control of surface roughness allowing for higher degree of control of design parameters.”

The enhanced understanding of effects of the pulse profile on the texture of silicon films has allowed the investigators to fabricate efficient organic/inorganic hybrid solar cells, with the highest reported efficiency for nanocrystalline silicon and the type of polymer used (MEH-PPV). (Applied Physics letters, 90, 203514) Dr Adikaari further states that “the cells were initially fabricated to help us understand nanocrystalline inorganic/organic interfaces, made with laser textured nanocrystalline silicon and spin-cast MEH-PPV. However, they result in impressive photocurrents, where the bulk of the photo-generation is believed to be from the nanocrystalline silicon layer."

The laser texturing of amorphous silicon has also been used to prove another concept to increase the surface area of organic photovoltaics while keeping the device thickness to a minimum. In a subsequent article to be published in Applied Physics Letters, the researchers report nano-imprinted organic cells with a laser textured stamp. The lead investigator Mr Nanditha Dissanayake states “the imprinting process results in a five-fold increase in photo-current, purely due to the surface area increase which increases the collection efficiency of the photo-generated carriers.”

The Director of the ATI, Professor Ravi Silva, who also heads the Nano Electronics Centre where the work was carried out, comments: “The fundamental understanding we have gained in nano-texturing of amorphous silicon has led ATI researchers to improve charge extraction of organic/inorganic hybrid devices, which is giving rise to some exciting device physics. These nano-engineered devices promise a lot of potential for large scale organic/inorganic photovoltaics.”

Stuart Miller | alfa
Further information:
http://portal.surrey.ac.uk/portal/page?_pageid=799,1523106&_dad=portal&_schema=PORTAL

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>