Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NIST atom interferometry displays new quantum tricks

30.05.2007
Physicists at the National Institute of Standards and Technology (NIST) have demonstrated a novel way of making atoms interfere with each other, recreating a famous experiment originally done with light while also making the atoms do things that light just won't do.

Their experiments showcase some of the extraordinary behavior taken for granted in the quantum world—atoms acting like waves and appearing in two places at once, for starters—and demonstrate a new technique that could be useful in quantum computing with neutral atoms and further studies of atomic hijinks.

The NIST experiments, described in Physical Review Letters,* recreate the historic "double-slit" experiment in which light is directed through two separate openings and the two resulting beams interfere with each other, creating a striped pattern. That experiment is a classic demonstration of light behaving like a wave, and the general technique, called interferometry, is used as a measurement tool in many fields. The NIST team used atoms, which, like light, can behave like particles or waves, and made the wave patterns interfere, or, in one curious situation, not.

Atom interferometers have been made before, but the NIST technique introduces some new twists. The researchers trap about 20,000 ultracold rubidium atoms with optical lattices, a lacework of light formed by three pairs of infrared laser beams that sets up an array of energy "wells," shaped like an egg carton, that trap the atoms. The lasers are arranged to create two horizontal lattices overlapping like two mesh screens, one twice as fine as the other in one dimension. If one atom is placed in each site of the wider lattice, and those lasers are turned off while the finer lattice is activated, then each site is split into two wells, about 400 nanometers apart. Under the rules of the quantum world, the atom doesn't choose between the two sites but rather assumes a "superposition," located in both places simultaneously. Images reveal a characteristic pattern as the two parts of the single superpositioned atom interfere with each other. (The effect is strong enough to image because this is happening to thousands of atoms simultaneously—see image.)

Everything changes when two atoms are placed in each site of the wider lattice, and those sites are split in two. The original atom pair is now in a superposition of three possible arrangements: both atoms on one site, both on the other, and one on each. In the two cases when both atoms are on a single site, they interact with each other, altering the interference pattern—an effect that does not occur with light. The imbalance among the three arrangements creates a strobe-like effect. Depending on how long the atoms are held in the lattice before being released to interfere, the interference pattern flickers on (with stripes) and off (no stripes). A similar "collapse and revival" of an interference pattern was seen in similar experiments done earlier in Germany, but that work did not confine a pair of atoms to a single pair of sites. The NIST experiments allowed researchers to measure the degree to which they had exactly one or exactly two atoms in a single site, and to controllably make exactly two atoms interact. These are important capabilities for making a quantum computer that stores information in individual neutral atoms.

Laura Ost | EurekAlert!
Further information:
http://www.nist.gov/public_affairs/quantum/quantum_info_index.html

More articles from Physics and Astronomy:

nachricht APEX takes a glimpse into the heart of darkness
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>