Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Astrophysicists find fractal image of Sun’s ‘Storm Season’ imprinted on Solar Wind

25.05.2007
Plasma astrophysicists at the University of Warwick have found that key information about the Sun’s 'storm season’ is being broadcast across the solar system in a fractal snapshot imprinted in the solar wind. This research opens up new ways of looking at both space weather and the unstable behaviour that affects the operation of fusion powered power plants.

Fractals, mathematical shapes that retain a complex but similar patterns at different magnifications, are frequently found in nature from snowflakes to trees and coastlines. Now Plasma Astrophysicists in the University of Warwick’s Centre for Fusion, Space and Astrophysics have devised a new method to detect the same patterns in the solar wind.

The researchers, led by Professor Sandra Chapman, have also been able to directly tie these fractal patterns to the Sun’s ‘storm season’. The Sun goes through a solar cycle roughly 11 years long. The researchers found the fractal patterns in the solar wind occur when the Sun was at the peak of this cycle when the solar corona was at its most active, stormy and complex – sunspot activity, solar flares etc. When the corona was quieter no fractal patterns were found in the solar wind only general turbulence.

This means that fractal signature is coming from the complex magnetic field of the sun.

This new information will help astrophysicists understand how the solar corona heats the solar wind and the nature of the turbulence of the Solar Wind with its implications for cosmic ray flux and space weather.

These techniques used to find and understand the fractal patterns in the Solar Wind are also being used to assist the quest for fusion power. Researchers in the University of Warwick’s Centre for Fusion, Space and Astrophysics (CFSA) are collaborating with scientists from the EURATOM/UKAEA fusion research programme to measure and understand fluctuations in the world leading fusion experiment MAST (the Mega Amp Spherical Tokamak) at Culham. Controlling plasma fluctuations in tokamaks is important for getting the best performance out of future fusion power plants.

Peter Dunn | alfa
Further information:
http://www.warwick.ac.uk
http://www2.warwick.ac.uk/newsandevents/pressreleases/astrophysicists_find_fractal/

More articles from Physics and Astronomy:

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

nachricht Physicists discover mechanism behind granular capillary effect
24.05.2017 | University of Cologne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>