Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Medical, high-energy physicists collaborate to improve PET scans

24.05.2007
Physicists are developing new electronics for identifying subatomic particles in high-energy accelerators that may also enable radiologists to detect cancer at an earlier, more curable stage.

"The electronics needs in medical imaging look very closely related to the needs we have in high-energy physics," said Henry Frisch, Professor in Physics at the University of Chicago. "Physics tends to advance by new capabilities in measurement, the same in radiology."

Radiologists, medical physicists and high-energy physicists share a desire to more precisely measure the velocity and location of subatomic particles, Frisch explained. A significant improvement in Positron Emission Tomography technology could mean the difference between life and death for some patients, said Chin-Tu Chen, Associate Professor in Radiology at the University of Chicago. Being able to detect a tumor measuring a quarter of an inch in diameter rather than half an inch would mean initiating treatment when the disease mass is eight times smaller by volume.

Frisch, Chen and physicist Karen Byrum of Argonne National Laboratory are pursuing the joint effort with initial funding provided by the U.S. Department of Energy, Argonne and the University of Chicago Cancer Research Center. Their work is part of an international scientific trend to apply high-energy physics technology to biomedical imaging techniques.

While medical physicists look for disease, high-energy physicists seek to identify what types of subatomic particles they produce in collider experiments. The identity of many such particles remains a mystery, and thus a barrier to some potentially dramatic new insights into the operation of the universe at the smallest of scales.

Today's high-energy physics experiments typically measure particle velocities to within an accuracy of 100 picoseconds (a trillionth of a second). A photon of light can travel approximately one inch in 100 picoseconds. Frisch would like to increase the resolution to one picosecond.

"We are not as ambitious as Henry," Chen said. "We are aiming more toward 30 picoseconds."

In the PET world, more accurate particle velocity measurements would translate into improved image quality and thus more accurate diagnoses, Chen said. Doing so would require an emerging technique called "time-of-flight PET," which provides a positional measurement that conventional PET technology lacks.

Only last December did the first commercial time-of-flight PET scanners become available. These scanners provide a time-of-flight resolution of 750 picoseconds, which corresponds to a resolution of a couple inches. "That's really not useful for improving the spatial resolution of PET," said Chien-Min Kao, Assistant Professor in Radiology.

But when used in connection with conventional PET, time-of-flight measurements do help improve image quality by sorting out useful signals from confusing static, Kao said. Physicists can help here, because they have solved some data-acquisition problems that still plague biomedical imaging.

In conventional PET scans, patients receive a dose of short-lived radioactive material that emits positrons. The PET scanner then detects the photons released when the positrons collide with neighboring electrons. This approach generates millions of signals, including countless spurious signals that require intense computational analysis to filter out. Furthermore, the locations of the signals can only be determined along the direction of the detector face.

But collection of new time-of-flight data permits determination of signal locations in a direction at a right angle to the detector face as well. "If time-of-flight measurements can be assessed with an accuracy less than 30 picoseconds, better resolution in both directions can be achieved, essentially eliminating the need for complex and costly image reconstruction," Chen said.

The medical imaging community first showed interest in time-of-flight PET in the early 1980s. Chen, then a Ph.D. student, devoted his dissertation to the topic. But the limited precision available from the detector crystals of the day prevented the concept from moving beyond the prototype stage. "I shelved my dissertation after I graduated, and for 15 years or so, no one talked about time-of-flight PET," he said.

In recent years, the development of faster crystals has renewed biomedical interest in the technique, as Frisch learned when he and Argonne's Karen Byrum organized a November 2005 workshop of picosecond particle measurements. The workshop brought them together with Chen and Patrick Le Dû of the French atomic energy commission.

Le Dû and Frisch had worked together almost 20 years ago to develop an instrument for the ill-fated Superconducting Supercollider. Nevertheless, "It was a complete surprise to find out that we were thinking along absolutely parallel lines," Frisch said of the ideas that Le Dû presented in his talk.

Scientists all over Europe, in fact, now work in concert to develop time-of-flight PET technology. Frisch, Chen, Kao and Byrum, meanwhile, have formed their own biomedical imaging effort that includes the Electronics Design Group at the University of Chicago's Enrico Fermi Institute.

Frisch recalled what happened when he first shared his idea for improving subatomic particle measurements with Harold Sanders, who heads the Electronics Group. "That was on a Friday afternoon, and Harold said, 'you're out of your mind.'" But the following Monday, Sanders said, "You know, maybe it's not completely crazy."

That was before they began working with Chen more than a year ago. "It still looks good, and we think it's far from crazy," Frisch said. "In fact, it may be possible."

Steve Koppes | EurekAlert!
Further information:
http://www.uchicago.edu

More articles from Physics and Astronomy:

nachricht APEX takes a glimpse into the heart of darkness
25.05.2018 | Max-Planck-Institut für Radioastronomie

nachricht First chip-scale broadband optical system that can sense molecules in the mid-IR
24.05.2018 | Columbia University School of Engineering and Applied Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>