Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Medical, high-energy physicists collaborate to improve PET scans

24.05.2007
Physicists are developing new electronics for identifying subatomic particles in high-energy accelerators that may also enable radiologists to detect cancer at an earlier, more curable stage.

"The electronics needs in medical imaging look very closely related to the needs we have in high-energy physics," said Henry Frisch, Professor in Physics at the University of Chicago. "Physics tends to advance by new capabilities in measurement, the same in radiology."

Radiologists, medical physicists and high-energy physicists share a desire to more precisely measure the velocity and location of subatomic particles, Frisch explained. A significant improvement in Positron Emission Tomography technology could mean the difference between life and death for some patients, said Chin-Tu Chen, Associate Professor in Radiology at the University of Chicago. Being able to detect a tumor measuring a quarter of an inch in diameter rather than half an inch would mean initiating treatment when the disease mass is eight times smaller by volume.

Frisch, Chen and physicist Karen Byrum of Argonne National Laboratory are pursuing the joint effort with initial funding provided by the U.S. Department of Energy, Argonne and the University of Chicago Cancer Research Center. Their work is part of an international scientific trend to apply high-energy physics technology to biomedical imaging techniques.

While medical physicists look for disease, high-energy physicists seek to identify what types of subatomic particles they produce in collider experiments. The identity of many such particles remains a mystery, and thus a barrier to some potentially dramatic new insights into the operation of the universe at the smallest of scales.

Today's high-energy physics experiments typically measure particle velocities to within an accuracy of 100 picoseconds (a trillionth of a second). A photon of light can travel approximately one inch in 100 picoseconds. Frisch would like to increase the resolution to one picosecond.

"We are not as ambitious as Henry," Chen said. "We are aiming more toward 30 picoseconds."

In the PET world, more accurate particle velocity measurements would translate into improved image quality and thus more accurate diagnoses, Chen said. Doing so would require an emerging technique called "time-of-flight PET," which provides a positional measurement that conventional PET technology lacks.

Only last December did the first commercial time-of-flight PET scanners become available. These scanners provide a time-of-flight resolution of 750 picoseconds, which corresponds to a resolution of a couple inches. "That's really not useful for improving the spatial resolution of PET," said Chien-Min Kao, Assistant Professor in Radiology.

But when used in connection with conventional PET, time-of-flight measurements do help improve image quality by sorting out useful signals from confusing static, Kao said. Physicists can help here, because they have solved some data-acquisition problems that still plague biomedical imaging.

In conventional PET scans, patients receive a dose of short-lived radioactive material that emits positrons. The PET scanner then detects the photons released when the positrons collide with neighboring electrons. This approach generates millions of signals, including countless spurious signals that require intense computational analysis to filter out. Furthermore, the locations of the signals can only be determined along the direction of the detector face.

But collection of new time-of-flight data permits determination of signal locations in a direction at a right angle to the detector face as well. "If time-of-flight measurements can be assessed with an accuracy less than 30 picoseconds, better resolution in both directions can be achieved, essentially eliminating the need for complex and costly image reconstruction," Chen said.

The medical imaging community first showed interest in time-of-flight PET in the early 1980s. Chen, then a Ph.D. student, devoted his dissertation to the topic. But the limited precision available from the detector crystals of the day prevented the concept from moving beyond the prototype stage. "I shelved my dissertation after I graduated, and for 15 years or so, no one talked about time-of-flight PET," he said.

In recent years, the development of faster crystals has renewed biomedical interest in the technique, as Frisch learned when he and Argonne's Karen Byrum organized a November 2005 workshop of picosecond particle measurements. The workshop brought them together with Chen and Patrick Le Dû of the French atomic energy commission.

Le Dû and Frisch had worked together almost 20 years ago to develop an instrument for the ill-fated Superconducting Supercollider. Nevertheless, "It was a complete surprise to find out that we were thinking along absolutely parallel lines," Frisch said of the ideas that Le Dû presented in his talk.

Scientists all over Europe, in fact, now work in concert to develop time-of-flight PET technology. Frisch, Chen, Kao and Byrum, meanwhile, have formed their own biomedical imaging effort that includes the Electronics Design Group at the University of Chicago's Enrico Fermi Institute.

Frisch recalled what happened when he first shared his idea for improving subatomic particle measurements with Harold Sanders, who heads the Electronics Group. "That was on a Friday afternoon, and Harold said, 'you're out of your mind.'" But the following Monday, Sanders said, "You know, maybe it's not completely crazy."

That was before they began working with Chen more than a year ago. "It still looks good, and we think it's far from crazy," Frisch said. "In fact, it may be possible."

Steve Koppes | EurekAlert!
Further information:
http://www.uchicago.edu

More articles from Physics and Astronomy:

nachricht Quantum optics allows us to abandon expensive lasers in spectroscopy
22.11.2017 | Lomonosov Moscow State University

nachricht Nano-watch has steady hands
22.11.2017 | University of Vienna

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>