Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Light to entangle mirrors

13.03.2002


Bouncing laser beams could bring quantum strangeness to the everyday world.



The quantum world of atoms and subatomic particles is full of intuition-defying phenomena such as objects existing in two different states at once. We don’t normally have to worry about such weirdness impinging on our everyday macroscopic world. But Italian physicists have worked out how to invest something we can see and touch with quantum strangeness.

Stefano Mancini, of the University of Milan, and colleagues plan to entangle two mirrors1. The fates of entangled objects are intimately entwined by the rules of quantum mechanics. If the plan works, one mirror will not exist in one state without the other being in another well-defined state.


Mancini and colleagues’ scheme makes use of the fact that when photons of light hit a mirror, they impart some momentum to it. The pressure of this radiation can make the mirror move. An intense light beam, such as a laser, bouncing back and forth between two movable mirrors can set up a standing wave that makes them oscillate.

Thus, entanglements between photons in the light beam could be translated into entanglements between these oscillating mirrors, the researchers suggest, making the mirrors’ motions interdependent.

The team calculates that entanglement should persist even at temperatures of four degrees above absolute zero - warm for the quantum world, and easy to achieve. Entangling macroscopic objects such as mirrors may provide a way to detect extremely weak forces with high precision, says Mancini2. Such weak forces have been proposed, for example, that modify Newton’s law of gravity.

Next stop teleportation?

Physicists hope to use entangled states of quantum particles, such as photons, to process information in new ways. By encoding information into the different states of atoms and photons, they are devising secure encryption methods for data transmission, to teleport quantum states from one place to another, and to produce new, ultrafast computers.

But no matter what the writers of Star Trek would have us believe, effects such as teleportation are not generally possible at the macroscopic scale, because entanglements of more than a handful of particles are extremely fragile.

Interactions between the particles and their environment typically disrupt their delicate interdependencies. The disruption is more pronounced the warmer the system gets. Even temperatures of just a degree or so above absolute zero are usually sufficient to blur out entanglements in systems that contain many particles.

References

  1. Mancini, S., Giovannetti, V., Vitali, D. & Tombesi, P. Entangling macroscopic oscillators exploiting radiation pressure. Physical Review Letters, 88, 120401, (2002).
  2. Mancini, S. & Tombesi, P. High-sensitivity force measurement using entangled meters. Preprint (2001).


PHILIP BALL | © Nature News Service

More articles from Physics and Astronomy:

nachricht Basque researchers turn light upside down
23.02.2018 | Elhuyar Fundazioa

nachricht Attoseconds break into atomic interior
23.02.2018 | Max-Planck-Institut für Quantenoptik

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>