Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Light to entangle mirrors

13.03.2002


Bouncing laser beams could bring quantum strangeness to the everyday world.



The quantum world of atoms and subatomic particles is full of intuition-defying phenomena such as objects existing in two different states at once. We don’t normally have to worry about such weirdness impinging on our everyday macroscopic world. But Italian physicists have worked out how to invest something we can see and touch with quantum strangeness.

Stefano Mancini, of the University of Milan, and colleagues plan to entangle two mirrors1. The fates of entangled objects are intimately entwined by the rules of quantum mechanics. If the plan works, one mirror will not exist in one state without the other being in another well-defined state.


Mancini and colleagues’ scheme makes use of the fact that when photons of light hit a mirror, they impart some momentum to it. The pressure of this radiation can make the mirror move. An intense light beam, such as a laser, bouncing back and forth between two movable mirrors can set up a standing wave that makes them oscillate.

Thus, entanglements between photons in the light beam could be translated into entanglements between these oscillating mirrors, the researchers suggest, making the mirrors’ motions interdependent.

The team calculates that entanglement should persist even at temperatures of four degrees above absolute zero - warm for the quantum world, and easy to achieve. Entangling macroscopic objects such as mirrors may provide a way to detect extremely weak forces with high precision, says Mancini2. Such weak forces have been proposed, for example, that modify Newton’s law of gravity.

Next stop teleportation?

Physicists hope to use entangled states of quantum particles, such as photons, to process information in new ways. By encoding information into the different states of atoms and photons, they are devising secure encryption methods for data transmission, to teleport quantum states from one place to another, and to produce new, ultrafast computers.

But no matter what the writers of Star Trek would have us believe, effects such as teleportation are not generally possible at the macroscopic scale, because entanglements of more than a handful of particles are extremely fragile.

Interactions between the particles and their environment typically disrupt their delicate interdependencies. The disruption is more pronounced the warmer the system gets. Even temperatures of just a degree or so above absolute zero are usually sufficient to blur out entanglements in systems that contain many particles.

References

  1. Mancini, S., Giovannetti, V., Vitali, D. & Tombesi, P. Entangling macroscopic oscillators exploiting radiation pressure. Physical Review Letters, 88, 120401, (2002).
  2. Mancini, S. & Tombesi, P. High-sensitivity force measurement using entangled meters. Preprint (2001).


PHILIP BALL | © Nature News Service

More articles from Physics and Astronomy:

nachricht Discovery of an Extragalactic Hot Molecular Core
29.09.2016 | National Astronomical Observatory of Japan

nachricht Swiss space research reaches for the sky
29.09.2016 | Schweizerischer Nationalfonds SNF

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

 
Latest News

New Multiferroic Materials from Building Blocks

29.09.2016 | Materials Sciences

Silicon Fluorescent Material Developed Enabling Observations under a Bright “Biological Optical Window”

29.09.2016 | Materials Sciences

X-shape Bio-inspired Structures

29.09.2016 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>