Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Light to entangle mirrors

13.03.2002


Bouncing laser beams could bring quantum strangeness to the everyday world.



The quantum world of atoms and subatomic particles is full of intuition-defying phenomena such as objects existing in two different states at once. We don’t normally have to worry about such weirdness impinging on our everyday macroscopic world. But Italian physicists have worked out how to invest something we can see and touch with quantum strangeness.

Stefano Mancini, of the University of Milan, and colleagues plan to entangle two mirrors1. The fates of entangled objects are intimately entwined by the rules of quantum mechanics. If the plan works, one mirror will not exist in one state without the other being in another well-defined state.


Mancini and colleagues’ scheme makes use of the fact that when photons of light hit a mirror, they impart some momentum to it. The pressure of this radiation can make the mirror move. An intense light beam, such as a laser, bouncing back and forth between two movable mirrors can set up a standing wave that makes them oscillate.

Thus, entanglements between photons in the light beam could be translated into entanglements between these oscillating mirrors, the researchers suggest, making the mirrors’ motions interdependent.

The team calculates that entanglement should persist even at temperatures of four degrees above absolute zero - warm for the quantum world, and easy to achieve. Entangling macroscopic objects such as mirrors may provide a way to detect extremely weak forces with high precision, says Mancini2. Such weak forces have been proposed, for example, that modify Newton’s law of gravity.

Next stop teleportation?

Physicists hope to use entangled states of quantum particles, such as photons, to process information in new ways. By encoding information into the different states of atoms and photons, they are devising secure encryption methods for data transmission, to teleport quantum states from one place to another, and to produce new, ultrafast computers.

But no matter what the writers of Star Trek would have us believe, effects such as teleportation are not generally possible at the macroscopic scale, because entanglements of more than a handful of particles are extremely fragile.

Interactions between the particles and their environment typically disrupt their delicate interdependencies. The disruption is more pronounced the warmer the system gets. Even temperatures of just a degree or so above absolute zero are usually sufficient to blur out entanglements in systems that contain many particles.

References

  1. Mancini, S., Giovannetti, V., Vitali, D. & Tombesi, P. Entangling macroscopic oscillators exploiting radiation pressure. Physical Review Letters, 88, 120401, (2002).
  2. Mancini, S. & Tombesi, P. High-sensitivity force measurement using entangled meters. Preprint (2001).


PHILIP BALL | © Nature News Service

More articles from Physics and Astronomy:

nachricht Gamma rays will reach beyond the limits of light
23.10.2017 | Chalmers University of Technology

nachricht Creation of coherent states in molecules by incoherent electrons
23.10.2017 | Tata Institute of Fundamental Research

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>