Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Light to entangle mirrors

13.03.2002


Bouncing laser beams could bring quantum strangeness to the everyday world.



The quantum world of atoms and subatomic particles is full of intuition-defying phenomena such as objects existing in two different states at once. We don’t normally have to worry about such weirdness impinging on our everyday macroscopic world. But Italian physicists have worked out how to invest something we can see and touch with quantum strangeness.

Stefano Mancini, of the University of Milan, and colleagues plan to entangle two mirrors1. The fates of entangled objects are intimately entwined by the rules of quantum mechanics. If the plan works, one mirror will not exist in one state without the other being in another well-defined state.


Mancini and colleagues’ scheme makes use of the fact that when photons of light hit a mirror, they impart some momentum to it. The pressure of this radiation can make the mirror move. An intense light beam, such as a laser, bouncing back and forth between two movable mirrors can set up a standing wave that makes them oscillate.

Thus, entanglements between photons in the light beam could be translated into entanglements between these oscillating mirrors, the researchers suggest, making the mirrors’ motions interdependent.

The team calculates that entanglement should persist even at temperatures of four degrees above absolute zero - warm for the quantum world, and easy to achieve. Entangling macroscopic objects such as mirrors may provide a way to detect extremely weak forces with high precision, says Mancini2. Such weak forces have been proposed, for example, that modify Newton’s law of gravity.

Next stop teleportation?

Physicists hope to use entangled states of quantum particles, such as photons, to process information in new ways. By encoding information into the different states of atoms and photons, they are devising secure encryption methods for data transmission, to teleport quantum states from one place to another, and to produce new, ultrafast computers.

But no matter what the writers of Star Trek would have us believe, effects such as teleportation are not generally possible at the macroscopic scale, because entanglements of more than a handful of particles are extremely fragile.

Interactions between the particles and their environment typically disrupt their delicate interdependencies. The disruption is more pronounced the warmer the system gets. Even temperatures of just a degree or so above absolute zero are usually sufficient to blur out entanglements in systems that contain many particles.

References

  1. Mancini, S., Giovannetti, V., Vitali, D. & Tombesi, P. Entangling macroscopic oscillators exploiting radiation pressure. Physical Review Letters, 88, 120401, (2002).
  2. Mancini, S. & Tombesi, P. High-sensitivity force measurement using entangled meters. Preprint (2001).


PHILIP BALL | © Nature News Service

More articles from Physics and Astronomy:

nachricht Heating quantum matter: A novel view on topology
22.08.2017 | Université libre de Bruxelles

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Molecular volume control

22.08.2017 | Life Sciences

When fish swim in the holodeck

22.08.2017 | Life Sciences

Biochemical 'fingerprints' reveal diabetes progression

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>