Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Slicing the Universe with HARP/ACSIS - A New Look at Orion

18.05.2007
The James Clerk Maxwell Telescope (JCMT) on Mauna Kea in Hawaii has a new way to look at the Universe, thanks to two revolutionary instruments called HARP and ACSIS. These instruments operate together, and they recently sliced through the Orion Nebula, recording for the first time the internal movements of its star-forming gases.

Orion is one of the most famous and recognisable constellations in the sky. At its heart, it harbours a vast cloud of gas and dust, the Orion Nebula, which is undergoing a burst of star formation. Astronomers refer to this and other similar regions as "stellar nurseries". Within this cloud, gas and dust extend over vast regions and help to "feed" the star formation. Gravity takes the gas and dust in these clouds and compresses it into stars.

HARP and ACSIS allow astronomers to see the motion of this gas with a clarity and precision not previously available at these wavelengths. Together they give the JCMT the powerful ability to record information in three dimensions. Unlike the previous generation of receiver systems, HARP/ACSIS can produce camera-like images of the sky across thousands of adjacent wavelengths simultaneously; forming a three-dimensional image set called a "spectral cube". The wavelength dimension permits the telescope to sense molecular tracers as well as to detect the motions of the gas.

These slices of wavelength reveal to astronomers the chemical make-up of our Galaxy and others in the Universe. There are many gas molecules that exist in space which emit radiation at wavelengths that HARP/ACSIS can tune to. The JCMT observes in the sub-millimetre range of wavelengths, much smaller wavelengths than a typical radio station, but much longer wavelengths than light waves. The naturally occurring emission from gas and dust in the material between the stars is particularly effective at revealing the processes of material accumulation to form stars. This process is still mysterious in its details, and the HARP/ACSIS receiver system on the JCMT is exquisitely tuned to study the precise constituents and motions of the gas and dust as it collapses to form stars. And that makes this instrument the perfect tool to examine the Orion Nebula.

The information that is recorded along the third "wavelength" dimension shows how much the gas molecules, in this case carbon monoxide, are radiating and how fast they are moving. We see gas with large motions both towards us and away from us at velocities approaching and exceeding 200 km/s (that's nearly half a million miles an hour). These velocity slices can be combined into a movie, allowing us to see that the hot nebula at the centre, where star formation is occurring most vigorously, is forcing gas out in what is called a "Champagne flow".

Dr. John Richer of the Cavendish Laboratory at the University of Cambridge (UK) says: "It's taken a long time to get to this point - the first science data from HARP/ACSIS - but it's been worth the wait. For the first time, we can make large-scale maps of the warm gas in molecular clouds and so begin to understand in detail the complex and spectacular processes which occur when stars form."

HARP (Heterodyne Array Receiver Programme) is an array of 16 spectral receivers, arranged in a 4x4 grid and using superconducting junctions as the detector elements. ACSIS (AutoCorrelation Spectrometer and Imaging System) is a system of high-speed digital electronics and computers for analysing the signals produced by HARP and other instruments. It contains more than 1000 customised chips and 30 microprocessors for handling the high data rate and producing results in a form that astronomers can use. ACSIS produces data at a rate 1000 times faster than the old JCMT system. Together these instruments have turned the JCMT into a sub-millimetre-wave 3-D camera rather than just a single-point telescope.

Dr. Jane Buckle of the Cavendish Laboratory says: "Commissioning HARP and ACSIS took a lot of hard work and dedication, particularly from the JAC, the Cavendish Laboratory and UK ATC staff, but the new spectral imaging capabilities at the JCMT make this a very exciting time for star formation research."

Dr. Bill Dent of the UK Astronomy Technology Centre in Edinburgh says:" We often find gas clouds many tens of light-years across containing hundreds of stars all forming simultaneously. With this new system, we can map the structure and measure the speed of the gas that's forming all these new stars and, furthermore, do a chemical analysis, perhaps looking for regions rich in rare and exotic molecules. Before HARP/ACSIS arrived, it was just not possible to study and understand whole clouds in this way."

"It's really exciting to see science pouring out of this instrument at long last," says Professor Richard Hills of the Cavendish Laboratory, the Project Scientist for HARP. And Dr. Harry Smith, HARP Project Manager, says: "It was great to work on what turned out to be a world-beating facility instrument."

Dr. John Richer has used the JCMT for 19 years to make spectroscopic observations of molecular clouds. "It used to be a painstaking and slow process. Now with HARP's 16 sensitive detectors, we can take data at a much more rapid rate and begin to answer much more ambitious questions about the formation of new star systems.

HARP/ACSIS is revolutionising our view of star formation in the galaxy," said Richer.

Professor Gary Davis, Director of the JCMT, said "ACSIS and HARP have been developed over the last several years by a network of instrumentation laboratories around the world. By making use of the very latest technologies, we have introduced a new capability at the observatory which cannot be matched anywhere in the world.

Astronomers will now be able to study star-forming regions such as Orion with unprecedented scope and detail. We are really excited about the science that these instruments will make possible for the first time."

Julia Maddock | alfa
Further information:
http://www.stfc.ac.uk

More articles from Physics and Astronomy:

nachricht Tracing aromatic molecules in the early universe
23.03.2017 | University of California - Riverside

nachricht New study maps space dust in 3-D
23.03.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>