Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Soft Matter and its Interface with Biology

To understand how biological systems work, Jaques Prost, professor of biological physics and managing director at the Ecole Supérieure de Physique et de Chimie Industrielles in Paris, is developing theoretical tools and new experiments to extract physical laws governing the morphology and dynamics of biological cells.

He described his work at the EPL symposium, “Physics In Our Times” held today (10 May) at the Fondation Del Duca de l’Institut de France, Paris. In particular, he is interested in areas such as cell traffic and motility, cell duplication and oscillations and signal transduction. He wants to know what characterises living systems as opposed to dead ones. One example is how the so-called fluctuation dissipation theorem is violated in a living system.

Much of eukaryotic cell dynamics results from the dynamical interaction of three major cell components. These are phospholipidic membranes, cytoskeletal networks and molecular motors. During his presentation, Prof. Prost gave three examples that illustrate how a quantitative description of basic biological processes can be obtained. He first discussed how molecular motors can pull phospholipidic nanotubes and how to obtain a theoretical description (without adjustable parameters) of this process - known to play an important role in eukaryotic cell traffic.

Next, he discussed cell motion. On a substrate, cells extend a thin layer, called the lamellipodium, which drags the cell forward. Using only symmetry and conservation arguments, he described the concept of “active gels” and discussed the shape and dynamics of the lamellipodium. In particular, he showed how the observed “retrograde flow” of gel naturally emerges out of the theory description.

Using the same framework, Prof. Prost also discussed how oscillations are obtained when cells are suspended in a fluid and suggested that the early stage of mitosis (cell division) is the bipolar manifestation of this same instability.

Prost says his team’s most exciting result to date has been to show that “hair cells” (the cells that detect sound in the inner ear) work with excellent precision at the verge of an oscillation instability - called a “Hopf bifurcation”. This finding explained no less than six previously unanswered questions, some dating from the 18th century.

“It is extremely difficult to drive a system so close to instability in a laboratory experiment,” explained Prost. “However, during evolution our ears have had plenty of time to drive 16 000 cells close to such instabilities! This shows how biology is interesting for physicists - evolution can drive systems under unlikely conditions that are almost inaccessible in the lab.”

Prof. Prost and colleagues have also developed a description of biological gels in which molecular motors provide “life” to these structures. “We are now in a position to raise questions about cell dynamics including cell duplication in terms of condensed matter physics,” he stated.

It is now clear that statistical physics and condensed matter physics are important for understanding biology. Prof. Prost believes that over the next 20 years we will finally be able to describe the connection between specific protein activity and global cell function in a quantitative way. “Such knowledge will have a profound impact on our understanding of pathologies such as cancer and neurodegenerative diseases, and hopefully help us find therapies,” he said.

Dianne Stilwell | alfa
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Seeking balanced networks: how neurons adjust their proteins during homeostatic scaling.

24.10.2016 | Life Sciences

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

More VideoLinks >>>