Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Soft Matter and its Interface with Biology

11.05.2007
To understand how biological systems work, Jaques Prost, professor of biological physics and managing director at the Ecole Supérieure de Physique et de Chimie Industrielles in Paris, is developing theoretical tools and new experiments to extract physical laws governing the morphology and dynamics of biological cells.

He described his work at the EPL symposium, “Physics In Our Times” held today (10 May) at the Fondation Del Duca de l’Institut de France, Paris. In particular, he is interested in areas such as cell traffic and motility, cell duplication and oscillations and signal transduction. He wants to know what characterises living systems as opposed to dead ones. One example is how the so-called fluctuation dissipation theorem is violated in a living system.

Much of eukaryotic cell dynamics results from the dynamical interaction of three major cell components. These are phospholipidic membranes, cytoskeletal networks and molecular motors. During his presentation, Prof. Prost gave three examples that illustrate how a quantitative description of basic biological processes can be obtained. He first discussed how molecular motors can pull phospholipidic nanotubes and how to obtain a theoretical description (without adjustable parameters) of this process - known to play an important role in eukaryotic cell traffic.

Next, he discussed cell motion. On a substrate, cells extend a thin layer, called the lamellipodium, which drags the cell forward. Using only symmetry and conservation arguments, he described the concept of “active gels” and discussed the shape and dynamics of the lamellipodium. In particular, he showed how the observed “retrograde flow” of gel naturally emerges out of the theory description.

Using the same framework, Prof. Prost also discussed how oscillations are obtained when cells are suspended in a fluid and suggested that the early stage of mitosis (cell division) is the bipolar manifestation of this same instability.

Prost says his team’s most exciting result to date has been to show that “hair cells” (the cells that detect sound in the inner ear) work with excellent precision at the verge of an oscillation instability - called a “Hopf bifurcation”. This finding explained no less than six previously unanswered questions, some dating from the 18th century.

“It is extremely difficult to drive a system so close to instability in a laboratory experiment,” explained Prost. “However, during evolution our ears have had plenty of time to drive 16 000 cells close to such instabilities! This shows how biology is interesting for physicists - evolution can drive systems under unlikely conditions that are almost inaccessible in the lab.”

Prof. Prost and colleagues have also developed a description of biological gels in which molecular motors provide “life” to these structures. “We are now in a position to raise questions about cell dynamics including cell duplication in terms of condensed matter physics,” he stated.

It is now clear that statistical physics and condensed matter physics are important for understanding biology. Prof. Prost believes that over the next 20 years we will finally be able to describe the connection between specific protein activity and global cell function in a quantitative way. “Such knowledge will have a profound impact on our understanding of pathologies such as cancer and neurodegenerative diseases, and hopefully help us find therapies,” he said.

Dianne Stilwell | alfa
Further information:
http://www.iop.org/EJ/journal/EPL

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>