Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UVES Investigates the Environment of a Very Remote Galaxy

11.03.2002


Surplus of Intergalactic Material May Be Young Supercluster

Observations with ESO`s Very Large Telescope (VLT) have enabled an international group of astronomers to study in unprecedented detail the surroundings of a very remote galaxy, almost 12 billion light-years distant. The corresponding light travel time means that it is seen at a moment only about 3 billion years after the Big Bang.

This galaxy is designated MS 1512-cB58 and is the brightest known at such a large distance and such an early time. This is due to a lucky circumstance: a massive cluster of galaxies (MS 1512+36) is located about halfway along the line-of-sight, at a distance of about 7 billion light-years, and acts as a gravitational "magnifying glass". Thanks to this lensing effect, the image of MS1512-cB58 appears 50 times brighter.

Nevertheless, the apparent brightness is still as faint as magnitude 20.6 (i.e., nearly 1 million times fainter than what can be perceived with the unaided eye). Moreover, MS 1512-cB58 is located 36deg north of the celestial equator and never rises more than 29deg above the horizon at Paranal. It was therefore a great challenge to secure the present observational data with the UVES high-dispersion spectrograph on the 8.2-m VLT KUEYEN telescope.

The extremely detailed UVES-spectrum of MS 1512-cB58 displays numerous signatures (absorption lines) of intergalactic gas clouds along the line-of-sight. Some of the clouds are quite close to the galaxy and the astronomers have therefore been able to investigate the distribution of matter in its immediate surroundings.

They found an excess of material near MS 1512-cB58, possible evidence of a young supercluster of galaxies, already at this very early epoch. The new observations thus provide an invaluable contribution to current studies of the birth and evolution of structures in the early Universe.

This is the first time this kind of observation has ever been done of a galaxy at such a large distance. All previous studies were based on much more luminous quasars (QSOs - extremely active galaxy nuclei). However, any investigation of the intergalactic matter around a quasar is complicated by the strong radiation and consequently, high ionization of the gas by the QSO itself, rendering an unbiased assessment of the gas distribution impossible.

The full text of this ESO Press Release, with three photos and all weblinks, is available at: www.eso.org/outreach/press-rel/pr-2002/pr-03-02.html

Richard West | alphagalileo

More articles from Physics and Astronomy:

nachricht Abrupt motion sharpens x-ray pulses
28.07.2017 | Max-Planck-Institut für Kernphysik

nachricht Physicists Design Ultrafocused Pulses
27.07.2017 | Universität Innsbruck

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>