Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mysteries and Surprises in Quantum Physics

10.05.2007
“Cavity quantum electrodynamics” is a sub-field of quantum optics. Speaking at the EPL symposium, “Physics In Our Times” held today (9 May) at the Fondation Del Duca de l’Institut de France, Paris Professor Serge Haroche from the Collège de France and the École Normale Supérieure in Paris, explained how he and his colleagues manipulate and control single atoms and single photons interacting in a cavity, which is a box made of highly reflecting walls.

By studying the behaviour of these atoms and photons in this protected environment, the physicists can illustrate fundamental aspects of quantum theory, such as state superpositions, complementarity and decoherence. This research is related to the physics of quantum information, a new domain at the frontier of information science and physics that tries to harness the logic of the quantum world to realise tasks in communication and computing that classical devices cannot achieve.

“During the 20th century, quantum physics has given us new technologies that have changed our lives – for example the computer, the laser and magnetic resonance imaging to name a few,” explained Prof. Haroche. “However, quantum laws have counterintuitive aspects that defy common sense. This has led to a paradox: although we all take advantage of quantum physics, it remains very strange - even some of the scientists that developed the theory, such as Einstein, Schrödinger and de Broglie, were uneasy about its deep meaning,” he said.

Prof. Haroche and his team have recently succeeded in trapping a single photon in a box on the time scale of seconds and have detected this photon many times without destroying it. The researchers have achieved this by sending atoms across the box and measuring the imprint left on the atoms by the photon. This is a new kind of light detection called ‘quantum non-demolition’,” explained Prof. Haroche. “Until now, single photons were always destroyed upon detection.”

The result means that it is now possible repeatedly to extract information from the same photon. This is important because the major part of all information we get from the universe come from light. “Developing a new way of ‘seeing’ could have applications in quantum science,” said Prof. Haroche. “A photon could share its information with an ensemble of atoms to build up an ‘entangled state’ of light or matter”.

Attempting to manipulate and control quantum systems raises important questions about the transition between quantum and classical behaviour. “Fundamentally, the goal is to understand nature better,” explained Prof. Haroche. “Applications, such as quantum communication machines, will certainly come but what they will be useful for is not yet clear. This is why research is so exciting – unpredictable things keep happening all the time.”

Prof. Haroche’s group is currently working with atoms and photons in cavities but related work is being done by other groups on trapped ions and cold atoms in optical potential wells, with superconducting junction or quantum dots in solid state devices. “Although the technologies may differ widely, the quantum and information science concepts used are the same,” he explained. “We are therefore witnessing a kind of unification between different fields of research that is very promising.”

Dianne Stilwell | alfa
Further information:
http://www.iop.org/EJ/journal/EPL

More articles from Physics and Astronomy:

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

nachricht Physicists discover mechanism behind granular capillary effect
24.05.2017 | University of Cologne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>