Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UC engineering researchers uncover factors that control ion motion in solid electrolytes

09.05.2007
University of Cincinnati researchers show for the first time that they can connect an increase in electrical (ionic) conductivity with flexibility of their networks.

The same team of researchers discovered intermediate phases seven years ago in amorphous or disordered materials where networks are covalently bonded.

The team’s results are presented in “Fast-ion conduction and flexibility of glassy networks,” to be published this spring in Physical Review Letters.

“We find that when networks become flexible their electrical conductivity increases precipitously,” says Deassy Novita. “Now we will be able to chemically tune these materials for specific applications. For example, the batteries implanted in patients who have heart pacemakers make use of a solid electrolyte.”

Novita is a third-year graduate student working in the lab of Punit Boolchand, professor of electrical engineering in the University of Cincinnati’s College of Engineering. Originally from Indonesia and now a U.S. citizen, Novita began the ground-breaking research as part of her doctoral thesis.

"This system has been studied by about 35 groups all over the world over the past two decades. We are the first to make these samples in a ‘dry’ state,” says Boolchand. “Most people who studied these materials produced them unwittingly in the laboratory ambient environment where the relative humidity is typically 50%, and that leads to samples that are — so to speak — in a ‘wet’ state. By special handling of the materials, we were able to produce them in a dry state, where we can see the intrinsic behavior of these materials.”

"The intrinsic behavior shows samples to exist in three elastic domains," Boolchand explains. "In the first domain, at low AgI (silver iodide) content (less than 9.5%) they form networks that are rigid but stressed. In the second domain, called the “intermediate phase,” at a slightly higher content of AgI (9.5 to 37.8%), they form networks that are rigid but unstressed. And finally in the third domain, at AgI content of 37.8% and higher, their networks become flexible."

The UC research team showed for the first time that such intermediate phases also exist in networks that are ionically conducting. In the flexible phase of these materials, “silver ions move like fish through water,” Boolchand says.

The next step in their research will be to understand why traces of water change the behavior of these electrolytes so drastically and to understand if the behavior observed here of three elastic domains is a general feature of all electrolyte glasses or is it peculiar to this very well studied material.

“We think the behavior will be observed in general in solid electrolytes,” says Boolchand.

The current work was supported by a National Science Foundation grant.

Published in “Fast-ion conduction and flexibility of glassy networks,” Physical Review Letters.

Authors:
Deassy I. Novita, Punit Boolchand, Department of Electrical and Computer Engineering, University of Cincinnati

M.Malki, Centre de Recherche sur les Matériaux a Haute Température, Université d’Orléans, France

M. Micoulaut, Laboratoire de Physique Théorique de la Matière Condensée, Université Pierre et Marie Curie, Paris, France

Wendy Beckman | EurekAlert!
Further information:
http://www.uc.edu

More articles from Physics and Astronomy:

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

nachricht What do Netflix, Google and planetary systems have in common?
02.12.2016 | University of Toronto

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>