Manchester to spearhead £8.3 million particle physics project

Particle accelerators are used to produce beams of charged particles such as protons or electrons, which are then used for a wide variety of applications in medicine and industry and for pure scientific research.

Researchers say there is a compelling need for new types of accelerator that are easier to operate and maintain, are more reliable and compact, yet are more flexible and efficient.

One such accelerator is the ‘non-scaling fixed field alternating gradient’ (NS-FFAG) accelerator.

It is considered a very promising candidate, but no-one has yet built such a machine, and there are many technical challenges to be overcome before such a machine could be used commercially.

The new CONFORM* project has received £7.5 million funding from the Engineering and Physical Sciences Research Council (EPSRC).

The research is being led Professor Roger Barlow from The School of Physics and Astronomy at The University of Manchester, in collaboration with Science and Technology Facilities Council (formerly the CCLRC) at the Daresbury Laboratory, The Cockroft Institute (also based at The Daresbury Laboratory), The University of Oxford, Imperial College London, The University of Birmingham, The University of Surrey, The University of Leeds, The University of Glasgow and The Gray Cancer Institute.

Professor Barlow said: “An opportunity is arising which could allow the NS-FFAG to be used as a new type of charged particle therapy machine for treating cancer. The reduced size, increased reliability and flexibility of such machines should all lead to lower costs of ownership while delivering more effective therapies.”

Professor Barlow adds that beams of protons or heavier particles such as carbon ions can deposit much more radiation directly in the cancer, while losing much less energy in the surrounding healthy tissue.

He continued: “NS-FFAGs could be used for many other purposes. They could be used to help generate electricity without significant greenhouse gas emissions while reducing the amount of long-lived nuclear waste produced.

“They could play a significant role in elementary particle physics, perhaps leading to new discoveries about the origin and structure of the universe we see around us today.

“This type of accelerator could also be at the heart of a new generation of very intense sources of neutrons for studying the structure of materials and the dynamics of chemical reactions, of interest to physicists, chemists, biologists, engineers and many industries.

“The demonstration in this country that these machines are able to meet the expectations listed above would place the UK at the forefront of this exciting new development.

“The benefits of this type of particle accelerator are large and wide-ranging. However, the behaviour of beams in these machines is impossible to predict in detail. We need to understand their stability and how tolerant they are of small changes in configuration.”

The CONFORM project is split into three areas; EMMA (Electron Machine with Many Applications) will look to develop a prototype FFAG to be built at the Daresbury Laboratory, while PAMELA is a design study for a proton NS-FFAG for medical applications. The third area will look at possible applications, from archaeology to zoology.

Media Contact

Jon Keighren alfa

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors