Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Manchester to spearhead £8.3 million particle physics project

04.05.2007
The University of Manchester is leading an £8.3 million drive to develop a new type of particle accelerator, which could lead to more effective cancer treatment, greener electricity and less nuclear waste.

Particle accelerators are used to produce beams of charged particles such as protons or electrons, which are then used for a wide variety of applications in medicine and industry and for pure scientific research.

Researchers say there is a compelling need for new types of accelerator that are easier to operate and maintain, are more reliable and compact, yet are more flexible and efficient.

One such accelerator is the ‘non-scaling fixed field alternating gradient’ (NS-FFAG) accelerator.

It is considered a very promising candidate, but no-one has yet built such a machine, and there are many technical challenges to be overcome before such a machine could be used commercially.

The new CONFORM* project has received £7.5 million funding from the Engineering and Physical Sciences Research Council (EPSRC).

The research is being led Professor Roger Barlow from The School of Physics and Astronomy at The University of Manchester, in collaboration with Science and Technology Facilities Council (formerly the CCLRC) at the Daresbury Laboratory, The Cockroft Institute (also based at The Daresbury Laboratory), The University of Oxford, Imperial College London, The University of Birmingham, The University of Surrey, The University of Leeds, The University of Glasgow and The Gray Cancer Institute.

Professor Barlow said: “An opportunity is arising which could allow the NS-FFAG to be used as a new type of charged particle therapy machine for treating cancer. The reduced size, increased reliability and flexibility of such machines should all lead to lower costs of ownership while delivering more effective therapies.”

Professor Barlow adds that beams of protons or heavier particles such as carbon ions can deposit much more radiation directly in the cancer, while losing much less energy in the surrounding healthy tissue.

He continued: “NS-FFAGs could be used for many other purposes. They could be used to help generate electricity without significant greenhouse gas emissions while reducing the amount of long-lived nuclear waste produced.

“They could play a significant role in elementary particle physics, perhaps leading to new discoveries about the origin and structure of the universe we see around us today.

“This type of accelerator could also be at the heart of a new generation of very intense sources of neutrons for studying the structure of materials and the dynamics of chemical reactions, of interest to physicists, chemists, biologists, engineers and many industries.

“The demonstration in this country that these machines are able to meet the expectations listed above would place the UK at the forefront of this exciting new development.

“The benefits of this type of particle accelerator are large and wide-ranging. However, the behaviour of beams in these machines is impossible to predict in detail. We need to understand their stability and how tolerant they are of small changes in configuration.”

The CONFORM project is split into three areas; EMMA (Electron Machine with Many Applications) will look to develop a prototype FFAG to be built at the Daresbury Laboratory, while PAMELA is a design study for a proton NS-FFAG for medical applications. The third area will look at possible applications, from archaeology to zoology.

Jon Keighren | alfa
Further information:
http://www.cockroft.ac.uk
http://www.scitech.ac.uk
http://www.manchester.ac.uk

More articles from Physics and Astronomy:

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

nachricht Physicists discover mechanism behind granular capillary effect
24.05.2017 | University of Cologne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>