Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Manchester to spearhead £8.3 million particle physics project

04.05.2007
The University of Manchester is leading an £8.3 million drive to develop a new type of particle accelerator, which could lead to more effective cancer treatment, greener electricity and less nuclear waste.

Particle accelerators are used to produce beams of charged particles such as protons or electrons, which are then used for a wide variety of applications in medicine and industry and for pure scientific research.

Researchers say there is a compelling need for new types of accelerator that are easier to operate and maintain, are more reliable and compact, yet are more flexible and efficient.

One such accelerator is the ‘non-scaling fixed field alternating gradient’ (NS-FFAG) accelerator.

It is considered a very promising candidate, but no-one has yet built such a machine, and there are many technical challenges to be overcome before such a machine could be used commercially.

The new CONFORM* project has received £7.5 million funding from the Engineering and Physical Sciences Research Council (EPSRC).

The research is being led Professor Roger Barlow from The School of Physics and Astronomy at The University of Manchester, in collaboration with Science and Technology Facilities Council (formerly the CCLRC) at the Daresbury Laboratory, The Cockroft Institute (also based at The Daresbury Laboratory), The University of Oxford, Imperial College London, The University of Birmingham, The University of Surrey, The University of Leeds, The University of Glasgow and The Gray Cancer Institute.

Professor Barlow said: “An opportunity is arising which could allow the NS-FFAG to be used as a new type of charged particle therapy machine for treating cancer. The reduced size, increased reliability and flexibility of such machines should all lead to lower costs of ownership while delivering more effective therapies.”

Professor Barlow adds that beams of protons or heavier particles such as carbon ions can deposit much more radiation directly in the cancer, while losing much less energy in the surrounding healthy tissue.

He continued: “NS-FFAGs could be used for many other purposes. They could be used to help generate electricity without significant greenhouse gas emissions while reducing the amount of long-lived nuclear waste produced.

“They could play a significant role in elementary particle physics, perhaps leading to new discoveries about the origin and structure of the universe we see around us today.

“This type of accelerator could also be at the heart of a new generation of very intense sources of neutrons for studying the structure of materials and the dynamics of chemical reactions, of interest to physicists, chemists, biologists, engineers and many industries.

“The demonstration in this country that these machines are able to meet the expectations listed above would place the UK at the forefront of this exciting new development.

“The benefits of this type of particle accelerator are large and wide-ranging. However, the behaviour of beams in these machines is impossible to predict in detail. We need to understand their stability and how tolerant they are of small changes in configuration.”

The CONFORM project is split into three areas; EMMA (Electron Machine with Many Applications) will look to develop a prototype FFAG to be built at the Daresbury Laboratory, while PAMELA is a design study for a proton NS-FFAG for medical applications. The third area will look at possible applications, from archaeology to zoology.

Jon Keighren | alfa
Further information:
http://www.cockroft.ac.uk
http://www.scitech.ac.uk
http://www.manchester.ac.uk

More articles from Physics and Astronomy:

nachricht Turning entanglement upside down
22.05.2018 | Universität Innsbruck

nachricht Astronomers release most complete ultraviolet-light survey of nearby galaxies
18.05.2018 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Asian tiger mosquito on the move

22.05.2018 | Life Sciences

Self-illuminating pixels for a new display generation

22.05.2018 | Trade Fair News

Embryonic development: How do limbs develop from cells?

22.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>